west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Porcin" 27 results
  • STUDY ON HUMAN LEUKOCYTE ANTIGEN G1 REDUCING XENO-CELL-REJECTION BYTRANSFECTINGPORCINE ENDOTHELIAL CELLS

    Objective To study whether the porcine endothelial cells (PECs) lines transfected by HLA-G1 can alter the lysis mediated by human peripheral blood mononuclear cell (PBMC) and natural killer cell 92(NK-92). Methods By use of liposomes pack, the pcDNA3.0 eukaryotic expression vector carrying HLA-G1 was transfected into PECs. Using indirect immunofluorescence and RT-PCR assays, the HLA-G1 expression in PECs was detected. The alteration of the lysis mediated by PBMC and NK-92 was detected by51Cr-release assays. Results HLA-G1 expression could be detected in PECs after transfection of HLA-G1 at the levels of protein andRNA. It also could be found that the survival rate of transfected PECs was muchhigher than that of non-transfected PECs, when both of them faced the lysismediated by human PBMC and NK-92.After transfecting the expression of HLA-G1 could be found in the transfected PECs and the lysis mediated by PBMC and NK-92 to PECs decreased obviously (Plt;0.05). Conclusion The PECs- transfected by HLAG1 can decrease the NK lysis, so that it may provide us a new thought to inhibit the xeno-cell-rejection.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • RESEARCHON CELL AFFINITY OF POLY-L-LACTIDE/PORCINE-DERIVED XENOGENEIC BONE COMPOSITE IN VITRO

    Objective To evaluate the feasibility of poly-L-lactide(PLLA)/porcinederived xenogeneic bone(PDXB) composite as a scaffold for the bone tissue engineering. Methods The film and the scaffold of the PLLA-PDXB composite were respectively prepared by a solution casting method and a solution casting-particle leaching method. The composite film and scaffold were further treated by the surface alkaline hydrolysis. The surface morphology of the composite was observed by the scanning electron microscopy, and hydrophilicity degree of the composite was measured. The OCT-1 osteoblastlike cells were cultured and amplified in vitro as the seeding cells, which werethen implanted on the film and scaffold. The adherence rate, adherence shape,proliferating activity, and growing morphology of the OCT-1 osteoblastlikecells were observed on the film. Results The PDXB particle 50 μm in diameter on average had a similar phase structure to that of hydroxyapatite. But its Ca/P ratio was lower than that of hydroxyapatite. After the surface alkaline hydrolysis, the PDXB particle could be exposed on the surface of the PLLA-PDXB composite. The surface roughness and hydrophilicity of the PLLAPDXB composite were obviously enhanced. The cell adherence rate and the cell proliferation activity of the PLLAPDXB composite were higher than those of the pure PLLA material. The cells tended to grow on the exposed surface of the PDXB particles. The cells seeded on the composite scaffold could migrate to the inside of the composite scaffold and grew well. Conclusion The PLLA-PDXB composite has a good cell affinity, and this kind of composite can hopefullybecome a new scaffold material to be used in the bone tissue engineering.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • AN ANIMAL MODEL FOUNDATION OF ARTICULAR FULL-THICKNESS CARTILAGE DEFECT BY SAVINGCALCIFIED CARTILAGE ZONE ON FEMORAL TROCHLEA IN PORCINE

    Objective To establ ish a porcine model of articular full-thickness cartilage defect characterized byremaining cartilage calcified zone on femoral trochlea, so as to provide a considerable and comparative control group forinvestigating repair effects of tissue engineered scaffolds in articular cartilage defects with cartilage calcified zone remaining.Methods The full-thickness cartilage column defects (6 mm in diameter, 0.2-0.5 mm in depth) without damage on calcifiedcartilage zone were made on the femoral trochlea in 9 clean-grade 6-month-old Guizhou mini pigs by standard cartilage-defectmakingsuites. Microscopical observation was performed after modeling. Scanning were made by 3.0T MRI at 4 weeks. Thengeneral observation, stereomicroscope, and histological staining were used to observe cartilage repair. Results All animals wereal ive. No infection of incisions or patellar dislocations occurred; they were able to walk with partial weight-bearing immediatelyafter surgery and could move freely without limp at 1 week. Obvious signal discontinuity in trochlea and subchondral bone couldbe observed in MRI, without deep signal change in defects surrounding. Microscopical observation showed a few repair tissueand petechia at base of the defect with clear boundary. Nearly intact calcified zone of cartilage and zonal collapse of subchondralbone in defects could be observed with stereomicroscope. Under common microscope, no chondrocytes was found in defects,as well as negative staining of fast green-safranin O and alcian blue. Under polarized microscope, the bottom of defects werefilled with a l ittle of fibrous tissue presenting continuous and b l ight-refraction by sirius red staining. Conclusion Theanimal model of articular full-thickness cartilage defect on femoral trochlea by standard cartilage-defect-making suites can beapplied for the research of cartilage disease in early human osteoarthritis and function of calcified cartilage zone in pig.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • PROGRESS IN ISOLATION AND PURIFICATION OF PORCINE ISLETS

    Objective To review the common methods of isolation and purification of porcine islets and research progress. Methods Domestic and abroad literature concerning the isolation and purification of porcine islets was reviewed and analyzed thoroughly. Results The efficacy of the isolation and purification depends on the selection of donor, the procurement and cryopreservation of high-quality donor pancreas, and the selection and improvement of the operation. Conclusion The shortage of transplanted islets could be resolved by the establishment of standardized and optimal process, which may also promote the development of porcine islet xenograft.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • HISTOLOGICAL OBSERVATION OF BIODERIVED BONE PREPARED BY DIFFERENTMETHODS AFTER IMPLANTATION

    Objective To explore the histological changes of bio-derived bone prepared by different methods after implantation, and to provide the scaffold material from xenogeneic animal for tissue engineering. Methods Theextremities of porcine femur were cut into 0.5 cm×0.5 cm×0.5 cm. Then they were divided into 5 groups according to different preparation methods: group A was fresh bone just repeatedly rinsed by saline; group B was degreased; group C was degreased and decalcificated; group D was degreased, acellular and decalcificated; group E wasdegreased and acellular. All the materials were implantated into femoral muscle pouch of rabbit after 25 kGy irradiation sterilization. The cell counting ofinflammatory cells and osteoclasts, HE and Masson staining, material degradation, collagen and new bone formation were observed at 2, 6, and 12 weeks postoperatively. Results The residue level of trace element in biomaterials prepared by different methods is in line with the standards. All the animals survived well. There were no tissue necrosis, fluid accumulation or inflammation at all implantation sites at each time point. The inflammatory cells counting was most in group A, and there was significant difference compared with other groups(P<0.05). There was no significant difference in osteoclasts counting among all groups. For the index of HE and Masson staining, collagen and new bone formation, groups C and D were best, group E was better, and groups A and B were worse. Conclusion The degreased, acellular and decalcificated porcine bone is better in degradation,bone formation, and lower inflammatory reaction, it can be used better scaffold material for tissue engineered bone.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY OF USING PORCINE SMALL INTESTINAL SUBMUCOSA TO REPAIR RAT FULL SKIN DEFECT

    Objective To investigate the feasibility of using the porcine small intestinal submucosa (SIS) as a kind of the new tissue engineered materials to repair the rat full skin defect. Methods Twenty-eight 6-week-old SD rats weighing 300-350 g were selected in this experimental study. Two 2-cm-diameter round full skin defects were made on the rat back. The upper round defect was used as the blank group, which had no coverings, and the lower round defect was used as the SIS group. SIS that had been produced earlier was transplanted in the defected area. At 3 days, 1, 2, 3, 4, 6 and 8 weeks after the transplantation, the observation was made on the repaired skin conditions, the HE stain, and the repaired skin proportion. Results There was no infection in the two groups. The repairing speed in the SIS group was faster than that in the blank group at 2, 3, 4 and 6 weeks after the transplantation. The skin repaired by SIS was soft and elastic in texture, which had the same high level as the normal skin. The scar tissues in the SIS group were thinner than those in the blank group. The repaired skin proportions at 1, 2, 3, 4, 6 and 8 weeks after the transplantation were 15.72%±3.64%, 43.81%±4.87%, 65.35%±5.63%, 87.95%±4.78%,96.90%±6.89% and 100%, respectively in the SIS group, and 13.42%±5.63%,58.74%±4.48%,76.50%±5.23%,92.30%±5.75% and 100%, respectively in the blank group. Therewas a statistically significant difference between the two groups at 1, 2, 3 and 4 weeks after the transplantation(P<0.05). Under the microscope, the SIS-repaired skin was observed to have more keratinocytes and collagen tissues, whichwas familiar to the normal skin.Conclusion Porcine SIS can be used as a new kind of the tissue engineered materials to repair the full skin defect.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • Development of Physiologic Fixation Method on Porcine Aortic Root and Aortic Valve Leaflets

    Objective To study the development of a physiologic fixation method and investigate the effect of physiologic fixation method on porcine aortic root and aortic valve leaflets. Methods Physiological fixer of aortic root was manufactured in a factory. The fixers with different diameter were made of organic glass. Porcine aortic root with ascending aorta and anterior leaflet of mitral valve and partial ventricular septum were dissected out from the fresh heart. The roots were attached to appropriately sized inflow and outflow spigots. Physiologic fixation was utilized to maintain aortic root and leaflets natural anatomical shape, the aortic root was pressurized to the inflow and outflow portions simultaneously, and the leaflets floated freely at zero-pressure differential with in the pressurized root. Results The process of physiologic fixation retained the properties of a native valve. The leaflets were much softer and extensible than those from valves fixed under low pressure. The results of pulsatile flow testing indicated that the effective orifice areas of predilation at 80mmHg were significantly greater than those of predilation at 40 mmHg(P〈0.05), while mean pressure differences were found to be lower comparatively(P〈0.05). This difference translates into a mode of valve function that more closely approximates that of the native aortic valve. Conclusion Physiologic fixation process retains the valve's natural anatomical shape as well as the underlying structure of the leaflets, providing improved flow characteristics.

    Release date:2016-08-30 06:23 Export PDF Favorites Scan
  • PROTECTIVE EFFECT OF BONE MARROW MESENCHYMAL STEM CELLS ON ISLETS FROM HYPOXIA/REOXYGENATION-INDUCED INJURY

    Objective To study the protective effects of bone marrow mesenchymal stem cells (BMSCs) of rhesus monkeys on porcine islets from hypoxia/reoxygenation (H/R)-induced injury. Methods BMSCs were isolated and cultured from the marrow of 5 adult rhesus monkeys (weighing, 6-10 kg) by adherent monocytes. Islets were isolated and purified from the pancreas of 5 neonatal porcine (3-5 days old) by collagenase V digestion method, and were cultured with or without BMSCs, and exposed to hypoxia (1%O2) for 12 hours and reoxygenation for 24 or 48 hours, respectively. The experiment was divided into 4 groups: normal islet group (group A), normal islet + BMSCs group (Group B), H/R islet group (group C), and H/R islet + BMSCs group (group D). The survival rate of islets was calculated by fluorescein diacetate/propidium iodide (PI) staining. The viability of the islet cells was detected by cell counting kit 8. Apoptotic rate of islet cells was tested using Annexin V-FITC/PI labeling and flow cytometry. The stimulation index (SI) of islet function was analyzed by glucose-stimulated insulin secretion assay. Results The islet cell cluster of group C was more dispersed than that of groups A and B, and group C had more death cells; and the islet cell cluster of group D was more complete and the survival rate was higher than those of group C. The survival rate of islet was 90.2% ± 9.1%, 88.3% ± 5.9%, 52.3% ± 12.1%, and 71.4% ± 11.5% in groups A, B, C, and D respectively, it was significantly lower in groups C and D than in groups A and B (P lt; 0.05), but it was significantly higher in group D than in group C (P lt; 0.05). After coculture of BMSCs and islet at the ratio of 1 ∶ 10 and 1 ∶ 20 in group D, the viability of islet cells was significantly higher than that in group C (P lt; 0.05). The apoptotic rate was 27.1% ± 3.2%, 24.0% ± 1.0%, 64.3% ± 1.8%, and 46.2% ± 1.4% in groups A, B, C, and D respectively, it was significantly higher in groups C and D than that in groups A and B (P lt; 0.05), but it was significantly lower in group D than in group C (P lt; 0.05). There was no significant difference in SI between groups A and B at each time point (P gt; 0.05), but it was significantly lower in group C than in groups A and B (P lt; 0.05); and it was significantly higher in group D than in group C at 24 and 72 hours (P lt; 0.05). Conclusion BMSCs of rhesus monkeys can protect islet vitality and function from H/R-induced injury.

    Release date:2016-08-31 04:08 Export PDF Favorites Scan
  • STUDY ON IMMUNE RESPONSE AFTER REPAIR OF NERVE DEFECT WITH ACELLULAR NERVE XENOGRAFT LADEN WITH ALLOGENIC ADIPOSE-DERIVED STEM CELLS IN RHESUS MONKEY

    Objective To observe the systemic and local immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose-derived stem cells (ADSCs) in rhesus monkey so as to evaluate the safety of the proposed material for nerve reconstruction. Methods Bilateral tibial nerves were taken from a healthy adult male landrace (weighing 48 kg) to prepare acellular nerve xenograft by chemical extraction. ADSCs were isolated from a healthy adult male rhesus monkey (weighing 4.5 kg), and were seeded into the acellular nerve grafts. The radial nerve defect models with 25 mm in length were established in 10 healthy adult female rhesus monkeys (weighing 3-5 kg), and they were divided into cell-laden group (n=5) and non-cell-laden group (n=5) randomly. Defect was repaired with acellular nerve xenograft laden with allogenic ADSCs in cell-laden group, with acellular nerve xenograft only in non-cell-laden group. The blood samples were taken from peripheral vein preoperatively and at 14, 60, and 90 days after operation for lymphocyte analysis; at 5 months after operation, the grafts were harvested to perform histological examination for local immune response and nerve regeneration. The nerve autograft in rhesus monkey was used as control. Results In cell-laden group and non-cell-laden group, no significant difference was found in the count of lymphocytes and T lymphocytes, the percentage of T lymphocytes, CD8+ T lymphocytes, as well as the ratio of CD4+ T lymphocytes to CD8+ T lymphocytes between pre- and post-operation (P gt; 0.05); in cell-laden group, the percentage of CD4+ T lymphocytes at 14 days was significantly lower than that at 60 and 90 days postoperatively (P lt; 0.05). The percentage of CD4+ T lymphocytes in cell-laden group was significantly lower than that in non-cell-laden group at 14 days (P lt; 0.05), but no significant difference was found in the other indexes at the other time between 2 groups (P gt; 0.05). At 5 months after operation, mild adhesion was found on the surface of nerve xenografts; the epineurium of nerve xenografts was thicker than that of nerve autografts; and neither necrosis nor fibrosis was found. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were scattered within the grafts, in which regenerative axons were revealed. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were comparable in cell-laden group, non-cell-laden group, and autograft group. Conclusion Repair of nerve defect with acellular nerve xenograft elicits neither systemic nor local immune response in rhesus monkeys. Implantation of allogenic ADSCs might result in transient depression of CD4+ T lymphocytes proliferation early after surgery, no immune response can be found.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • PORCINE ACELLULAR DERMAL MATRIX FOR REPAIR OF ABDOMINAL WALL DEFECTS IN RABBIT MODEL

    Objective To research the effect of porcine acellular dermal matrix in the reconstruction of abdominal wall defects in rabbits, and to investigate the appl ication feasibil ity of xeno-transplantation of acellular dermal matrix. Methods The porcine acellular dermal matrix was prepared from a health white pig. Twenty-six Japanese white rabbits (weighing 2.2-2.3 kg, female or male) were randomly assigned to 2 groups: the control group (n=6) and the experimental group (n=20). In the control group, the full-thickness abdominal wall defect of 5.0 cm × 0.5 cm was made, and the defect wassutured directly; in the experimental group, the full-thickness abdominal wall defect of 5.0 cm × 2.5 cm was made, and the defect was repaired with porcine acellular dermal matrix patch at the same size as the defect. At 5 weeks after surgery, the incidence of hernia and the intra-abdominal adhesions were observed and the wound breaking strength was compared between the patchfascia interface and the fascia-fascia interface. The graft vascularization was evaluated through histological analysis at 6 months after surgery in the experimental group. Results No hernia occurred in all rabbits of 2 groups. At 5 weeks after surgery, heal ing was observed between patch and the muscularfascia; the vascularization was seen in the porcine acellular dermal matrix patch. There was no significant difference in the adhesion grade (Z= —0.798, P=0.425) between the experimental group (grade 2 in 1 rabbit, grade 1 in 5, and grade 0 in 12) and the control group (grade 1 in 1 and grade 0 in 5). No significant difference was found (t= —0.410, P=0.683) in the breaking strength between the patch-fascia interface in the experimental group [(13.0 ± 5.5) N] and the fascia-fascia interface in control group [(13.6 ± 4.0) N]. In the experimental group, the small vessels and the infiltration of inflammatory cells were observed in the porcine acellular dermal matrix patch after 5 weeks through histological observations. The junctions of the patch-fascia interface healed with fibrous connective tissue. At 6 months after surgery, the inflammation was subsided and the collagen fiber of the patch was reconstructed. Conclusion The porcine acellular dermal matrix patchhas good results in repairing full-thickness abdominal wall defect. The patch-fascia interface has siml iar breaking strength to the fascia-fascia interface. The collagen fibers of the patch are reconstructed.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content