west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Porcine" 27 results
  • HISTOLOGICAL OBSERVATION OF BIODERIVED BONE PREPARED BY DIFFERENTMETHODS AFTER IMPLANTATION

    Objective To explore the histological changes of bio-derived bone prepared by different methods after implantation, and to provide the scaffold material from xenogeneic animal for tissue engineering. Methods Theextremities of porcine femur were cut into 0.5 cm×0.5 cm×0.5 cm. Then they were divided into 5 groups according to different preparation methods: group A was fresh bone just repeatedly rinsed by saline; group B was degreased; group C was degreased and decalcificated; group D was degreased, acellular and decalcificated; group E wasdegreased and acellular. All the materials were implantated into femoral muscle pouch of rabbit after 25 kGy irradiation sterilization. The cell counting ofinflammatory cells and osteoclasts, HE and Masson staining, material degradation, collagen and new bone formation were observed at 2, 6, and 12 weeks postoperatively. Results The residue level of trace element in biomaterials prepared by different methods is in line with the standards. All the animals survived well. There were no tissue necrosis, fluid accumulation or inflammation at all implantation sites at each time point. The inflammatory cells counting was most in group A, and there was significant difference compared with other groups(P<0.05). There was no significant difference in osteoclasts counting among all groups. For the index of HE and Masson staining, collagen and new bone formation, groups C and D were best, group E was better, and groups A and B were worse. Conclusion The degreased, acellular and decalcificated porcine bone is better in degradation,bone formation, and lower inflammatory reaction, it can be used better scaffold material for tissue engineered bone.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • PROGRESS IN ISOLATION AND PURIFICATION OF PORCINE ISLETS

    Objective To review the common methods of isolation and purification of porcine islets and research progress. Methods Domestic and abroad literature concerning the isolation and purification of porcine islets was reviewed and analyzed thoroughly. Results The efficacy of the isolation and purification depends on the selection of donor, the procurement and cryopreservation of high-quality donor pancreas, and the selection and improvement of the operation. Conclusion The shortage of transplanted islets could be resolved by the establishment of standardized and optimal process, which may also promote the development of porcine islet xenograft.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • STUDY ON IMMUNE RESPONSE AFTER REPAIR OF NERVE DEFECT WITH ACELLULAR NERVE XENOGRAFT LADEN WITH ALLOGENIC ADIPOSE-DERIVED STEM CELLS IN RHESUS MONKEY

    Objective To observe the systemic and local immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose-derived stem cells (ADSCs) in rhesus monkey so as to evaluate the safety of the proposed material for nerve reconstruction. Methods Bilateral tibial nerves were taken from a healthy adult male landrace (weighing 48 kg) to prepare acellular nerve xenograft by chemical extraction. ADSCs were isolated from a healthy adult male rhesus monkey (weighing 4.5 kg), and were seeded into the acellular nerve grafts. The radial nerve defect models with 25 mm in length were established in 10 healthy adult female rhesus monkeys (weighing 3-5 kg), and they were divided into cell-laden group (n=5) and non-cell-laden group (n=5) randomly. Defect was repaired with acellular nerve xenograft laden with allogenic ADSCs in cell-laden group, with acellular nerve xenograft only in non-cell-laden group. The blood samples were taken from peripheral vein preoperatively and at 14, 60, and 90 days after operation for lymphocyte analysis; at 5 months after operation, the grafts were harvested to perform histological examination for local immune response and nerve regeneration. The nerve autograft in rhesus monkey was used as control. Results In cell-laden group and non-cell-laden group, no significant difference was found in the count of lymphocytes and T lymphocytes, the percentage of T lymphocytes, CD8+ T lymphocytes, as well as the ratio of CD4+ T lymphocytes to CD8+ T lymphocytes between pre- and post-operation (P gt; 0.05); in cell-laden group, the percentage of CD4+ T lymphocytes at 14 days was significantly lower than that at 60 and 90 days postoperatively (P lt; 0.05). The percentage of CD4+ T lymphocytes in cell-laden group was significantly lower than that in non-cell-laden group at 14 days (P lt; 0.05), but no significant difference was found in the other indexes at the other time between 2 groups (P gt; 0.05). At 5 months after operation, mild adhesion was found on the surface of nerve xenografts; the epineurium of nerve xenografts was thicker than that of nerve autografts; and neither necrosis nor fibrosis was found. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were scattered within the grafts, in which regenerative axons were revealed. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were comparable in cell-laden group, non-cell-laden group, and autograft group. Conclusion Repair of nerve defect with acellular nerve xenograft elicits neither systemic nor local immune response in rhesus monkeys. Implantation of allogenic ADSCs might result in transient depression of CD4+ T lymphocytes proliferation early after surgery, no immune response can be found.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • EFFECT OF MECHANICAL STIMULATION COMBINED WITH INDUCTIVE FACTORS ON TISSUE ENGINEERED CARTILAGE

    Objective Mechanical stimulation and inductive factors are both crucial aspects in tissue engineered cartilage. To evaluate the effects of mechanical stimulation combined with inductive factors on the differentiation of tissue engineered cartilage. Methods Bone marrow mesenchymal stem cells (BMSCs) were isolated from newborn porcine (aged7 days and weighing 3-6 kg) and expanded in vitro. The BMSCs at passage 2 were seeded onto a scaffold of poly (lactic-coglycol ic acid) (PLGA) in the concentration of 5 × 107/mL to prepare cell-scaffold composite. Cell-scaffold composites were cultivated in a medium with chondrocyte-inducted factors (group A), in a vessel with mechanic stimulating only (group B), or mechanic stimulating combined with chondrocyte-inducted factors (group C) (parameters of mechanics: 1 Hz, 0.5 MPa, and 4 hours/day). Cell-scaffold composite and auto-cartilage served as positive control (group D) and negative control (group E), respectively. After 4 weeks of cultivation, the thickness, elastic modulus, and glycosaminoglycan (GAG) content of composites were measured. Additionally, BMSCs chondrogenic differentiation was assessed via real-time fluorescent quantitative PCR, immunohistochemistry, and histological staining. Results The thickness, elastic modulus, and maximum load in group C were significantly higher than those in groups A and B (P lt; 0.05). In groups A, B, and C, cartilage lacuna formation, GAG expression, and positive results for collagen type II were obsersed through HE staining, Safranin-O staining, and immunohistochemistry staining. The dyeing depth was deeper in group A than in group B, and in group C than in groups A and B; group C was close to group E. The GAG content in group C was significantly higher than that in groups A and B (P lt; 0.05). Real-time fluorescent quantitative PCR revealed that mRNA expressions of collagen type I, collagen type II, and GAG in group C were significantly higher than those in groups A and B (P lt; 0.05), and in group A than in group B (P lt; 0.05). Conclusion Mechanical stimulation combined with chondrocyte inductive factors can enhance the mechanical properties of the composite and induce higher expression of collagen and GAG of BMSCs.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • PORCINE ACELLULAR DERMAL MATRIX FOR REPAIR OF ABDOMINAL WALL DEFECTS IN RABBIT MODEL

    Objective To research the effect of porcine acellular dermal matrix in the reconstruction of abdominal wall defects in rabbits, and to investigate the appl ication feasibil ity of xeno-transplantation of acellular dermal matrix. Methods The porcine acellular dermal matrix was prepared from a health white pig. Twenty-six Japanese white rabbits (weighing 2.2-2.3 kg, female or male) were randomly assigned to 2 groups: the control group (n=6) and the experimental group (n=20). In the control group, the full-thickness abdominal wall defect of 5.0 cm × 0.5 cm was made, and the defect wassutured directly; in the experimental group, the full-thickness abdominal wall defect of 5.0 cm × 2.5 cm was made, and the defect was repaired with porcine acellular dermal matrix patch at the same size as the defect. At 5 weeks after surgery, the incidence of hernia and the intra-abdominal adhesions were observed and the wound breaking strength was compared between the patchfascia interface and the fascia-fascia interface. The graft vascularization was evaluated through histological analysis at 6 months after surgery in the experimental group. Results No hernia occurred in all rabbits of 2 groups. At 5 weeks after surgery, heal ing was observed between patch and the muscularfascia; the vascularization was seen in the porcine acellular dermal matrix patch. There was no significant difference in the adhesion grade (Z= —0.798, P=0.425) between the experimental group (grade 2 in 1 rabbit, grade 1 in 5, and grade 0 in 12) and the control group (grade 1 in 1 and grade 0 in 5). No significant difference was found (t= —0.410, P=0.683) in the breaking strength between the patch-fascia interface in the experimental group [(13.0 ± 5.5) N] and the fascia-fascia interface in control group [(13.6 ± 4.0) N]. In the experimental group, the small vessels and the infiltration of inflammatory cells were observed in the porcine acellular dermal matrix patch after 5 weeks through histological observations. The junctions of the patch-fascia interface healed with fibrous connective tissue. At 6 months after surgery, the inflammation was subsided and the collagen fiber of the patch was reconstructed. Conclusion The porcine acellular dermal matrix patchhas good results in repairing full-thickness abdominal wall defect. The patch-fascia interface has siml iar breaking strength to the fascia-fascia interface. The collagen fibers of the patch are reconstructed.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • Development of Physiologic Fixation Method on Porcine Aortic Root and Aortic Valve Leaflets

    Objective To study the development of a physiologic fixation method and investigate the effect of physiologic fixation method on porcine aortic root and aortic valve leaflets. Methods Physiological fixer of aortic root was manufactured in a factory. The fixers with different diameter were made of organic glass. Porcine aortic root with ascending aorta and anterior leaflet of mitral valve and partial ventricular septum were dissected out from the fresh heart. The roots were attached to appropriately sized inflow and outflow spigots. Physiologic fixation was utilized to maintain aortic root and leaflets natural anatomical shape, the aortic root was pressurized to the inflow and outflow portions simultaneously, and the leaflets floated freely at zero-pressure differential with in the pressurized root. Results The process of physiologic fixation retained the properties of a native valve. The leaflets were much softer and extensible than those from valves fixed under low pressure. The results of pulsatile flow testing indicated that the effective orifice areas of predilation at 80mmHg were significantly greater than those of predilation at 40 mmHg(P〈0.05), while mean pressure differences were found to be lower comparatively(P〈0.05). This difference translates into a mode of valve function that more closely approximates that of the native aortic valve. Conclusion Physiologic fixation process retains the valve's natural anatomical shape as well as the underlying structure of the leaflets, providing improved flow characteristics.

    Release date:2016-08-30 06:23 Export PDF Favorites Scan
  • ADVANCES OF PRECLINICAL RESEARCH IN XENOGENEIC (PORCINE) CELL TRANSPLANTATION

    ObjectiveTo summarize the advances of precl inical research in xenogeneic (porcine) cell transplantation in recent years. MethodsThe literature about the precl inical research in xenogeneic (porcine) cell transplantation was analyzed and summarized. ResultsWith the application of new immunosuppressive agents and the generation of transgenic pigs, great progress has been achieved in xenogeneic transplantation of pig-derived nerve cells, islet cells, liver cells, and various types of stem cells. The survival time of xenogeneic cell (porcine) significantly prolonged, but there is still a long way to go before cl inical application. ConclusionThe source of xenogeneic (porcine) cells is abundant and the experiments are reproducible. However, how to effectively prevent rejection and prolong the survival time in the host, and avoid the spread of virus between species are still need to be solved in the future research.

    Release date: Export PDF Favorites Scan
  • PRELIMINARY STUDY ON POROUS SCAFFOLD PREPARED WITH DECELLULARIZED ARTERY

    Objective To investigate the feasibil ity of preparing the porous extracellular matrix (ECM) by use of some chemicals and enzymes to decellularize the porcine carotid artery. Methods The porcine carotid artery was procured, and warm ischemia time was less than 30 minunts. The porcine carotid artery was decellularized with 1% sodium dodecyl sulfate (SDS) for 60 hours to prepare common ECM; then common ECM was treated with 0.25% trypsin (for 6 hours) and 0.3 U/ mL collagenase (for 24 hours) to prepare porous ECM. The common ECM and porous ECM were stained with HE,Masson’s trichrome, and Orcein to evaluate the histological features. Then the mechanical property, cytotoxicity, and pore size of ECMs were determined. After 4 weeks of subcutaneous implantation in dogs, the histological examination was used for the study. Results Histological observation confirmed that 2 kinds of ECMs were decellularized completely and more porous structure was observed in porous ECM. Scanning electron microscope showed the pores in porous ECM were greater and the length of shorter axis in porous ECM ranged from 5 to 30 μm, the length of longer axis from 40 to 100 μm. The porosity of porous ECM (99.25%) was greater than that of common ECM (91.50%). The burst pressure of porous ECM decreased when compared with common ECM, showing significant difference [(0.154 3 ± 0.012 7) MPa vs [0.305 2 ± 0.015 7) MPa, P lt; 0.05]. There was no significant difference in suture retention strength between 2 kinds of ECMs (P gt; 0.05). The cytotoxicity test showed no obvious cytotoxicity in 2 kinds of ECMs. In vivo implantation test showed that the deeper host cells infiltration and more neo-microvessels in porous ECM were observed than in common ECM. Conclusion SDS and some enzymes can be used to prepare porous ECM as the scaffold for tissue engineered blood vessels.

    Release date:2016-08-31 05:49 Export PDF Favorites Scan
  • BIOMECHANICAL STUDY ON SUTURE WITH NECKWEAR-KNOT-LOOPLIGATURE FOR TIBIAL EMINENCE AVULSION FRACTURES

    ObjectiveTo study the biomechanical stability of neckwear-knot-loop-ligature fixation for tibial eminence avulsion fractures by comparing with cannulated screw fixation and suture anchor fixation. MethodsTwenty-four fresh porcine knee joints were selected. After the model of tibial eminence avulsion fracture (type Ⅲ) was made, 24 samples were randomly divided into 3 groups: neckwear-knot-loop-ligature group (group A), cannulated screw group (group B), and suture anchor group (group C), 8 samples in each group. The Universal electromagnetic and mechanical testing machines were used for the biomechanical tests. After 200 cyclic tests, pull-out test was done until fixation failure. The maximum failure load, yield load, stiffness, and displacement were measured. ResultsFailure mode: the displacement was beyond limit in 8 samples of group A; screws extraction (5 samples) and bone fragment re-fracture (3 samples) were observed in group B; and suture anchor extraction (4 samples), suture rupture (3 samples), and suture thread cutting (1 sample) were found in group C. Biomechanical test: From groups A to C, the maximum failure load and yield load showed significant decreasing tendency (P<0.05), but the displacements showed significant increasing tendency (P<0.05). The stiffness also gradually decreased, but differences was not significant (P>0.05). ConclusionCompared with cannulated screw and suture anchor, neckwear-knot-loop-ligature fixation for tibial eminence avulsion fracture has good biomechanical performance and the advantages of firm fixation and simple operation.

    Release date: Export PDF Favorites Scan
  • OSTEODIFFERENTIATION OF BONE MARROW MESENCHYMAL STEM CELLS AFTER TRANSFECTED BY LENTIVIRAL VECTOR MEDIATED BONE MORPHOGENETIC PROTEIN 2

    Objective To construct recombinant lentiviral vectors of porcine bone morphogenetic protein 2 (BMP-2) gene and to detect BMP-2 gene activity and bone marrow mesenchymal stem cells (BMSCs) osteogenetic differentiation so as to lay a foundation of the further study of osteochondral tissue engineering. Methods BMSCs were isolated from bone marrow of 2-month-old Bama miniature porcines (weighing, 15 kg), and the 2nd generation of BMSCs were harvested for experiments. The porcine BMP-2 gene lentiviral vector was constructed by recombinant DNA technology and was used to transfect BMSCs at multiplicity of infection (MOI) of 10, 25, 50, 100, and 200, then the optimal value of MOI was determined by fluorescent microscope and inverted phase contrast microscope. BMSCs transfected by BMP-2 recombinant lentiviral vectors served as experimental group (BMP-2 vector group); BMSCs transfected by empty vector (empty vector group), and non-transfected BMSCs (non-transfection group) were used as control groups. RT-PCR, immunohistochemistry staining, and Western blot were performed to detect the expressions of BMP-2 mRNA and protein. Then the BMSCs osteogenesis was detected by alkaline phosphatase (ALP) staining, ALP activities, and Alizarin red staining. Results The recombinant lentiviral vectors of porcine BMP-2 gene was successfully constructed and identified by RT-PCR and gene sequencing, and BMSCs were successfully transfected by BMP-2 recombinant lentiviral vectors. Green fluorescent protein could be seen in the transfected BMSCs, especially at MOI of 100 with best expression. The immunohistochemistry staining and Western blot showed that BMSCs transfected by BMP-2 recombinant lentiviral vectors could express BMP-2 protein continuously and stably at a high level. After cultivation of 2 weeks, the expression of ALP and the form of calcium nodules were observed. Conclusion The porcine BMP- 2 gene lentiviral vector is successfully constructed and transfected into the BMSCs, which can express BMP-2 gene and protein continuously and stably at a high level and induce BMSCs differentiation into osteoblasts.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content