west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Prediction model" 21 results
  • Mortaligy risk prediction models for acute type A aortic dissection: a systematic review

    ObjectiveTo systematically review mortality risk prediction models for acute type A aortic dissection (AAAD). MethodsPubMed, EMbase, Web of Science, CNKI, WanFang Data, VIP and CBM databases were electronically searched to collect studies of mortality risk prediction models for AAAD from inception to July 31th, 2021. Two reviewers independently screened literature, extracted data and assessed the risk of bias of included studies. Systematic review was then performed. ResultsA total of 19 studies were included, of which 15 developed prediction models. The performance of prediction models varied substantially (AUC were 0.56 to 0.92). Only 6 studies reported calibration statistics, and all models had high risk of bias. ConclusionsCurrent prediction models for mortality and prognosis of AAAD patients are suboptimal, and the performance of the models varies significantly. It is still essential to establish novel prediction models based on more comprehensive and accurate statistical methods, and to conduct internal and a large number of external validations.

    Release date:2021-12-21 02:23 Export PDF Favorites Scan
  • Construction and validation of the associated depression risk prediction model in patients with type Ⅱ diabetes mellitus

    ObjectiveTo explore the risk factors for accompanying depression in patients with community type Ⅱ diabetes and to construct their risk prediction model. MethodsA total of 269 patients with type Ⅱ diabetes accompanied with depression and 217 patients with simple type Ⅱ diabetes from three community health service centers in two streets of Pingshan District, Shenzhen from October 2021 to April 2022 were included. The risk factors were analyzed and screened out, and a logistic regression risk prediction model was constructed. The goodness of fit and prediction ability of the model were tested by the Hosmer-Lemeshow test and the receiver operating characteristic (ROC) curve. Finally, the model was verified. ResultsLogistic regression analysis showed that smoking, diabetes complications, physical function, psychological dimension, medical coping for face, and medical coping for avoidance were independent risk factors for depressive disorder in patients with type Ⅱ diabetes. Modeling group Hosmer-Lemeshow test P=0.345, the area under the ROC curve was 0.987, sensitivity was 95.2% and specificity was 98.6%. The area under the ROC curve was 0.945, sensitivity was 89.8%, specificity was 84.8%, and accuracy was 86.8%, showing the model predictive value. ConclusionThe risk prediction model of type Ⅱ diabetes patients with depressive disorder constructed in this study has good predictive and discriminating ability.

    Release date:2023-09-15 03:49 Export PDF Favorites Scan
  • Predictive model for the risk of knee osteoarthritis: a systematic review

    ObjectiveTo systematically evaluate the risk prediction model of knee osteoarthritis (KOA). MethodsThe CNKI, WanFang Data, VIP, PubMed, Embase, Web of Science and Cochrane Library databases were electronically searched to collect relevant studies on KOA’s risk prediction model from inception to April, 2024. After study screening and data extraction by two independent researchers, the PROBAST bias risk assessment tool was used to evaluate the bias risk and applicability of the risk prediction model. ResultsA total of 12 studies involving 21 risk prediction models for KOA were included. The number of predictors ranged from 3 to 12, and the most common predictors were age, sex, and BMI. The range of modeling AUC included in the model was 0.554-0.948, and the range of testing AUC was 0.6-0.94. The overall predictive performance of the models was mediocre and the risk of overall bias was high, and more than half of the models were not externally verified. ConclusionAt present, the overall quality and applicability of the KOA morbidity risk prediction model still have great room for improvement. Future modeling should follow the CHARMS and PROBAST to reduce the risk of bias, explore the combination of multiple modeling methods, and strengthen the external verification of the model.

    Release date:2024-10-16 11:24 Export PDF Favorites Scan
  • PROBAST+AI: an introduction to the quality, risk of bias, and applicability assessment tool for prediction model studies using artificial intelligence or regression methods

    With the rapid development of artificial intelligence (AI) and machine learning technologies, the development of AI-based prediction models has become increasingly prevalent in the medical field. However, the PROBAST tool, which is used to evaluate prediction models, has shown growing limitations when assessing models built on AI technologies. Therefore, Moons and colleagues updated and expanded PROBAST to develop the PROBAST+AI tool. This tool is suitable for evaluating prediction model studies based on both artificial intelligence methods and regression methods. It covers four domains: participants and data sources, predictors, outcomes, and analysis, allowing for systematic assessment of quality in model development, risk of bias in model evaluation, and applicability. This article interprets the content and evaluation process of the PROBAST+AI tool, aiming to provide references and guidance for domestic researchers using this tool.

    Release date:2025-09-15 01:49 Export PDF Favorites Scan
  • Individual treatment effects models based on randomized controlled trials: a systematic review

    ObjectiveTo review individual treatment effect (ITE) models developed from randomized controlled trials, with the aim of systematically summarizing the current state of model development and assessing the risk of bias. MethodsPubMed and Embase databases were searched for studies published between 1990 and 14 June 2024. Data were extracted using the CHARMS inventory, and the PROBAST risk of bias tool was used to assess model quality. ResultsA total of 11 publications were included, containing 19 ITE models. The ITE modelling methods were regression models with interaction terms (n=8, 42.1%), dual-range models (n=5, 26.3%) and machine learning (n=6, 31.6%). The ITE models had a reporting rate of 78.9%, 73.2% and 10.5% for differentiation, calibration and clinical validity, respectively. Fourteen models were assessed as having a high risk of bias (73.7%), particularly in the area of statistical analysis, due to inappropriate handling of missing data (n=15, 78.9%), inappropriate consideration of model fit issues (n=5, 26.3%), etc. ConclusionCommon approaches to ITE model development include constructing interaction terms, dual procedure theory, and machine learning, but suffer from a low number of model developments, more complex modeling methods, and non-standardized reporting. In the future, emphasis should be placed on further exploration of ITE models, promoting diversified modeling methods and standardized reporting to improve the clinical promotion and practical application value of the models.

    Release date: Export PDF Favorites Scan
  • Construction and validation of a nomogram prediction model for the risk of pregnant women's fear of childbirth

    ObjectiveTo construct and verify the nomogram prediction model of pregnant women's fear of childbirth. MethodsA convenient sampling method was used to select 675 pregnant women in tertiary hospital in Tangshan City, Hebei Province from July to September 2022 as the modeling group, and 290 pregnant women in secondary hospital in Tangshan City from October to December 2022 as the verification group. The risk factors were determined by logistic regression analysis, and the nomogram was drawn by R 4.1.2 software. ResultsSix predictors were entered into the model: prenatal education, education level, depression, pregnancy complications, anxiety and preference for delivery mode. The areas under the ROC curves of the modeling group and the verification group were 0.834 and 0.806, respectively. The optimal critical values were 0.113 and 0.200, respectively, with sensitivities of 67.2% and 77.1%, the specificities were 87.3% and 74.0%, and the Jordan indices were 0.545 and 0.511, respectively. The calibration charts of the modeling group and the verification group showed that the coincidence degree between the actual curve and the ideal curve was good. The results of Hosmer-Lemeshow goodness of fit test were χ2=6.541 (P=0.685) and χ2=5.797 (P=0.760), and Brier scores were 0.096 and 0.117, respectively. DCA in modeling group and verification group showed that when the threshold probability of fear of childbirth were 0.00 to 0.70 and 0.00 to 0.70, it had clinical practical value. ConclusionThe nomogram model has good discrimination, calibration and clinical applicability, which can effectively predict the risk of pregnant women's fear of childbirth and provide references for early clinical identification of high-risk pregnant women and targeted intervention.

    Release date:2024-01-30 11:15 Export PDF Favorites Scan
  • Development of a prediction model of absolute risk for breast cancer

    ObjectivesTo explore the construction method of prediction model of absolute risk for breast cancer and provide personalized breast cancer management strategies based on the results.MethodsA case-control design was conducted with 2 747 individuals diagnosed as primary breast cancer by pathology in West China Hospital of Sichuan University from 2000 to 2017 and 6 307 healthy controls from Breast Cancer Screening Cohort in Sichuan Women and Children Center and Chengdu Shuangliu District Maternal and Child Health Hospital. Standardized questionnaires and information management systems in hospital were used to collect information. Decision trees, logistic regression, the formula in Gail model and registration data in China were used to estimate the probability of 5-year risk of breast cancer. Eventually a ROC (receiver operating characteristics) curve was drawn to identify optimal cut-off value, and the power was evaluated.ResultsThe decision tree exported 4 variables, which were urban or rural sources, number of live birth, age and age at menarche. The median 5-year risk and interquartile range of the controls was 0.027% and 0.137%, while the median 5-year risk and interquartile range of the cases was 0.219% and 0.256%. The ROC curve showed the cut-off value was 0.100%. Through verification, the sensitivity was 0.79, the specificity was 0.73, the accuracy was 0.75, and the AUC (area under the curve) was 0.79.ConclusionsThe methods used in our study based on 9 054 female individuals in Sichuan province could be used to predict the 5-year risk for breast cancer. Predictor variables include urban or rural sources, number of live birth, age, and age at menarche. If the 5-year risk is more than 0.100%, the person will be judged as a high risk individual.

    Release date:2020-01-14 05:25 Export PDF Favorites Scan
  • Construction and validation of prediction model for diabetic distal symmetric polyneuropathy based on neural network

    ObjectiveTo construct a prediction model of diabetics distal symmetric polyneuropathy (DSPN) based on neural network algorithm and the characteristic data of traditional Chinese medicine and Western medicine. MethodsFrom the inpatients with diabetes in the First Affiliated Hospital of Anhui University of Chinese Medicine from 2017 to 2022, 4 071 cases with complete data were selected. The early warning model of DSPN was established by using neural network, and 49 indicators including general epidemiological data, laboratory examination, signs and symptoms of traditional Chinese medicine were included to analyze the potential risk factors of DSPN, and the weight values of variable features were sorted. Validation was performed using ten-fold crossover, and the model was measured by accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC value. ResultsThe mean duration of diabetes in the DSPN group was about 4 years longer than that in the non-DSPN group (P<0.001). Compared with non-DSPN patients, DSPN patients had a significantly higher proportion of Chinese medicine symptoms and signs such as numbness of limb, limb pain, dizziness and palpitations, fatigue, thirst with desire to drink, dry mouth and throat, blurred vision, frequent urination, slow reaction, dull complexion, purple tongue, thready pulse and hesitant pulse (P<0.001). In this study, the DSPN neural network prediction model was established by integrating traditional Chinese and Western medicine feature data. The AUC of the model was 0.945 3, the accuracy was 87.68%, the sensitivity was 73.9%, the specificity was 92.7%, the positive predictive value was 78.7%, and the negative predictive value was 90.72%. ConclusionThe fusion of Chinese and Western medicine characteristic data has great clinical value for early diagnosis, and the established model has high accuracy and diagnostic efficacy, which can provide practical tools for DSPN screening and diagnosis in diabetic population.

    Release date:2024-03-13 08:50 Export PDF Favorites Scan
  • The value of SEH scores during bronchoscopy in evaluating of ventilator-associated pneumonia in critical patients

    ObjectiveTo observe the relationship between ventilator-associated pneumonia (VAP) and changes in bronchial mucosa and sputum in critically ill patients. A prediction model for SEH score was developed according to the abnormal degrees of airway sputum , mucosal edema and mucosal hyperemia , as well as to analyze the diagnostic value of the SEH scores for VAP during bronchoscopy. MethodsA collection of general data and initial bronchoscopy results was conducted for patients admitted to the department of intensive care unit at West China Hospital from March 1, 2024, to July 1, 2024. Patients were divided into infection group (n=138) and non-infection group (n=227) according to diagnostic criteria for VAP based on the date of their first bronchoscopy. T-tests were used to compare baseline data between groups, while analysis of variance was employed to assess differences in airway mucosal and sputum lesions. A binary logistic regression model was constructed using the SEH scores for predicting VAP risk, with receiver operating characteristic curve area under the curve (AUC) utilized to evaluate model accuracy. ResultsA total of 365 patients were included in this study, among which 138 cases (37.8%) were diagnosed with VAP. The AUC for using SEH scores in diagnosing VAP was found to be 0.81 [95% confidence interval (CI) 0.76-0.85], with an optimal cutoff value set at 6.5. The sensitivity and specificity of SEH scores for diagnosing VAP were determined as 79.7% (95% CI: 72.2%-85.6%) and 73.1% (95% CI:67.0%-78.5%). Patients with SEH scores over 6.5 exhibited a significantly higher rate of VAP infection (64.3% vs.14.4%, P<0.0001), elevated white blood cell count levels (WBC) [(13.3±7.5 vs.1.8±6.2), P=0.04], as well as increased hospital mortality rates (39.8 % vs.24.2 %, P=0.002). ConclusionsThe SEH scores has a certain efficacy in the diagnosis of VAP in patients with mechanical ventilation. Compared with the traditional VAP diagnostic criteria, SEH scores is easier to obtain in clinical practice, and has certain clinical application value.

    Release date:2025-03-06 09:32 Export PDF Favorites Scan
  • Methodological quality evaluation on clinical prediction models of traditional Chinese medicine: a systematic review

    Objective To systematically review the methodological quality of research on clinical prediction models of traditional Chinese medicine. Methods The PubMed, Embase, Web of Science, CNKI, WanFang Data, VIP and SinoMed databases were electronically searched to collect literature related to the research on clinical prediction models of traditional Chinese medicine from inception to March 31, 2023. Two reviewers independently screened literature, extracted data and assessed the risk of bias of the included studies based on prediction model risk of bias assessment tool (PROBAST). Results A total of 113 studies on clinical prediction models of traditional Chinese medicine (79 diagnostic model studies and 34 prognostic model studies) were included. Among them, 111 (98.2%) studies were rated at high risk of bias, while 1 (0.9%) study was rated at low risk of bias and risk of bias of 1 (0.9%) study was unclear. The analysis domain was rated with the highest proportion of high risk of bias, followed by the participants domain. Due to the widespread lack of reporting of specific study information, risk of bias of a large number of studies was unclear in both predictors and outcome domain. Conclusion Most existing researches on clinical prediction models of traditional Chinese medicine show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include non-prospective data source, outcome definitions that include predictors, inadequate modeling sample size, inappropriate feature selection, inaccurate performance evaluation, and incorrect internal validation methods. Comprehensive methodological improvements on design, conduct, evaluation, and validation of modeling, as well as reporting of all key information of the models are urgently needed for future modeling studies, aiming to facilitate their translational application in medical practice.

    Release date:2024-03-13 08:50 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content