Human lymphocyte function-associated antigen 3 (hLFA3) has been identified as an important T cell accessory molecule. Rhesus monkeys (Macaca mulatta) have been widely used as animal models for human immune disorders. Due to the species-specificity of immune system, it is necessary to study M. mulatta LFA3 (mmLFA3). In this study, the gene encoding mmLFA3 CD2-binding domain (mmLFA3Sh) was amplified by polymerase chain reaction (PCR) and genetically fused to human IgG1 Fc fragment in pPIC9K to construct the expression plasmid pPIC9K-mmLFA3Sh-Ig. Approximately 3-4 mg mmLFA3Sh-Ig protein was recovered from 1 L of inductive media, and mmLFA3Sh-Ig produced by the P. pastoris can bind to the CD2 positive cells, and suppress the monkey and human lymphocytes proliferation induced by Con A and alloantigen in a dose-dependent manner. These results suggested that mmLFA3Sh-Ig might be used as a novel tool for pathogenesis and experimental immunotherapy of Rhesus monkey immune disorders.
ObjectiveTo analyze the relationship between the bone mineral density (BMD) and lumbar intervertebral disc degeneration in rhesus macaques by using T1ρ-MRI. MethodsTwenty female rhesus macaques at the age of 10.9 years on average (rang, 4-20 years) were selected. The lumbar intervertebral discs were classified by Pfirrmann grading system and the T1ρ relaxation time (T1ρ value) was examined by using MRI (Philips 1.5 Tesla), and then BMD values of the L4,5 vertebrae and femoral ward's triangle were detected by using Osteocore dual energy X-ray absorptiometry. Finally, the relationship of T1ρ value of the lumbar intervertebral discs and Pfirrmann grading with age, weight, BMD of lumbar vertebrae and femoral ward's triangle was analyzed. ResultsThe BMD values of lumbar vertebrae and femoral ward's triangle were (0.64±0.17) g/cm2 and (0.67±0.19) g/cm2 respectively, showing no significant difference (t=2.893, P=0.128). According to Pfirrmann grading system, there were 7 cases of grade I, 8 cases of grade Ⅱ, and 5 cases of grade Ⅲ at L4,5 intervertebral discs. The T1ρ value of the lumbar intervertebral disc was (104.08±18.65) ms; the T1ρ values of grades I, Ⅱ, and Ⅲ were (121.31±13.44), (104.73±15.01), and (77.41±11.87) ms, respectively. There was a negative correlation between T1ρ value and the age and the BMD of lumbar vertebrae and femoral ward's triangle. There was a positive correlation between Pfirrmann grading and the variables as listed above. Significant negative linear correlation was also observed between T1ρ value and Pfirrmann grading. ConclusionThe T1ρ value is a reliable index when quantifying lumbar intervertebral disc degeneration, and there is a significant positive correlation between BMD and lumbar intervertebral disc degeneration in rhesus macaques.
Objective To observe the systemic and local immune response after repair of nerve defect with acellular nerve xenograft laden with allogenic adipose-derived stem cells (ADSCs) in rhesus monkey so as to evaluate the safety of the proposed material for nerve reconstruction. Methods Bilateral tibial nerves were taken from a healthy adult male landrace (weighing 48 kg) to prepare acellular nerve xenograft by chemical extraction. ADSCs were isolated from a healthy adult male rhesus monkey (weighing 4.5 kg), and were seeded into the acellular nerve grafts. The radial nerve defect models with 25 mm in length were established in 10 healthy adult female rhesus monkeys (weighing 3-5 kg), and they were divided into cell-laden group (n=5) and non-cell-laden group (n=5) randomly. Defect was repaired with acellular nerve xenograft laden with allogenic ADSCs in cell-laden group, with acellular nerve xenograft only in non-cell-laden group. The blood samples were taken from peripheral vein preoperatively and at 14, 60, and 90 days after operation for lymphocyte analysis; at 5 months after operation, the grafts were harvested to perform histological examination for local immune response and nerve regeneration. The nerve autograft in rhesus monkey was used as control. Results In cell-laden group and non-cell-laden group, no significant difference was found in the count of lymphocytes and T lymphocytes, the percentage of T lymphocytes, CD8+ T lymphocytes, as well as the ratio of CD4+ T lymphocytes to CD8+ T lymphocytes between pre- and post-operation (P gt; 0.05); in cell-laden group, the percentage of CD4+ T lymphocytes at 14 days was significantly lower than that at 60 and 90 days postoperatively (P lt; 0.05). The percentage of CD4+ T lymphocytes in cell-laden group was significantly lower than that in non-cell-laden group at 14 days (P lt; 0.05), but no significant difference was found in the other indexes at the other time between 2 groups (P gt; 0.05). At 5 months after operation, mild adhesion was found on the surface of nerve xenografts; the epineurium of nerve xenografts was thicker than that of nerve autografts; and neither necrosis nor fibrosis was found. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were scattered within the grafts, in which regenerative axons were revealed. CD3+, CD4+, CD8+, CD68+, and CD163+ T lymphocytes were comparable in cell-laden group, non-cell-laden group, and autograft group. Conclusion Repair of nerve defect with acellular nerve xenograft elicits neither systemic nor local immune response in rhesus monkeys. Implantation of allogenic ADSCs might result in transient depression of CD4+ T lymphocytes proliferation early after surgery, no immune response can be found.
ObjectiveTo establish the degenerative disc animal model in rhesus macaques and to verify its reliability with T1ρ, spin-lock imaging and T2-mapping MRI and histological observation. MethodsTwelve female rhesus macaques (aged 4-6 years, weighing 4.4-6.1 kg) were enrolled in the study. The L5, 6 intervertebral disk was used for the experimental group by injecting 1 mL bleomycin A5 (2 mg/mL) to its adjacent endplates to induce degeneration, and the L4,5 intervertebral disk for the control group by injecting 1 mL normal sodium to its adjacent endplates. T1ρ and T2-mapping relaxation time was examined by using MRI, and the histological observation was performed to evaluate the process of degeneration at 1, 4, and 12 weeks after operation. ResultsThere was no significant change of T1ρ, T2 map relaxation time in the control group at different time points before and after operation (P>0.05). In the experimental group, there was a significant decrease of T1ρ relaxation time from 4 weeks after operation, showing significant difference when compared with the values at pre-operation and 1 week after operation (P<0.05). The T2 map relaxation time decreased significantly at 12 weeks after operation, showing significant difference when compared with the values at the other time points (P<0.05). There was no significant difference between 2 groups at the other time points (P>0.05) except T1ρ relaxation time at 4 and 12 weeks and T2 map relaxation time at 12 weeks (P<0.05). No significant change of the percentage of the high intensity area of the operated discs was observed on T2WI of MRI after operation in 2 groups (P>0.05). The histological results showed that the number of nucleus pulposus decreased and arranged irregularly at 4 weeks, and there were fibrosis changes of nucleus pulposus and cleft of the inner annulus fibrosus at 12 weeks after operation in the experimental group. ConclusionDegeneration of lumbar intervertebral disc in rhesus macaques can be induced by injecting bleomycin A5. T1ρ-MRI may be an effective method to evaluate early degeneration of intervertebral disc.
ObjectiveTo investigate the early diagnostic value of transforming growth factor-β1(TGF-β1) on acute rejection after liver transplantation in rhesus by detecting the expression of TGF-β1 in the liver tissue. MethodsLiver transplantation models in rhesus were constructed by the improved vascular dual cuff, supporting tube of biliary tract, and artery anastomosis method.The successful models were randomly divided into experimental group (no immunosuppressant treatment in perioperative period) and control group (treated by immunosuppressant in perioperative period).Then the blood samples and liver tissues were collected at 6, 12, 24, and 72 hours after surgery.Allograft rejections of liver tissue after liver transplantation were monitored by liver function test, hematoxylin-eosin staining and Banff score.Finally, the expression level of TGF-β1 was detected by Western blot analysis or immunohistochemistry technique. Results①The acute rejection happened in all the rhesus at 12 h, 24 h and 72 h after liver transplantation, especially at 72 h after liver transplantation in the experimental group, the Banff grade levels of acute rejection in the liver tissue was more severe than that in the control group (P < 0.05).②The levels of ALT, AST, and TBIL after liver transplantation was gradually increased, which were similar at 6 h and 12 h after transplantation between the two groups, but which at 24 h and 72 h after transplantation in the experimental group were significantly higher than those in the control group (P < 0.05).③The results of TGF-β1 protein expression using immunohistochemical detection:The percentage of positive area of TGF-β1 of liver tissue at 12 h in the experimental group was significantly higher than that in the control group (P < 0.05).With the extension of time, it was gradually increased and significantly higher than that in the control group at 24 h or 72 h (P < 0.05).④The semi-quantitative results of TGF-β1 protein expression using Western blot detection:The TGF-β1 protein expressions began to increase at 6 h after liver transplantation in the experimental group and the control group, and the magnitude of increase was more obvious in the experimental group.The TGF-β1 protein expressions at different time (6 h, 12 h, 24 h, and 72 h) in the experimental group were significantly higher than those in the control group (P value was 0.003, 0.001, 0.001, and 0.001, respectively). ConclusionsThe elevated level of TGF-β1 of liver tissue after liver transplantation might suggest the enhanced cellular immune function, it might have certain significance for early diagnosis of acute rejection after liver transplantation.
Objective To establish a method to isolate the CD4+CD25+ regulatory T cells (Tregs) and to identify the purity and function of these cells. Methods The peripheral blood (8 mL) were collected from the great saphenous vein of 10 rhesus monkeys (4 females and 6 males, aged 4-5 years, and weighing 5-8 kg). The mononuclear cells were isolated with density gradient centrifugation. CD4+ T cells were separated by the Magnetic cell sorting (MACS) negative selection and MACS positive selection. The cell yield rate, the cell viability, and the cell purity were compared between MACS negative selection and MACS positive selection. In CD4+ MACS negative selection, the anti-biotin MicroBeads and biotin-antibody cocktai in CD4+CD25+ Tregs isolation kit non-human primate were used, and in MACS positive selection, the anti-APC MicroBeads in CD4+CD25+ Tregs isolation kit non-human primate and CD4-APC were used. The CD4+ T cells separated by positive selection were selected to obtain CD4+CD25 Tregs with CD25 MicroBeads. The purity, activity, the FoxP3 level, and the suppressive function to concanavalin A (ConA) activated autologous CD4+CD24- effective T cells (Teffs) of CD4+CD25+ Tregs were detected by flow cytometry. Results After CD4+ T cells were separated by MACS negative selection and MACS positive selection, the cell viabilities were all up to 95%, showing no significant difference (P gt; 0.05). The cell yield rate and purity of CD4+ T cells by positive selection were significantly higher than those of CD4+ T cells by negative selection (P lt; 0.05). CD4+CD25+ Tregs can be successfully isolated by MACS double positive selection. The classifying purity was 76.2% ± 8.6%; the cell activity was 93.3% ± 4.7%; and the level of FoxP3 was 74.2% ± 6.9%. The CD4+CD25+ Tregs had suppressive effect on ConA activated autologous CD4+CD25- Teffs. Conclusion MACS double positive selection can be used to isolate high-purity CD4+CD25+ Tregs from the peripheral blood of rhesus monkeys and the process does not influence the activity of CD4+CD25+ Tregs.
Objective To construct the rhesus monkey Schwann cells (SCs) modified with human glial cell derived neurotrophic factor (hGDNF) gene. Methods The coding sequence of hGDNF amplified by PCR from pUC19-hGDNF was inserted into eukaryotic expression vector pBABE-puro. The recombinant eukaryotic expression vector pBABE-puro-hGDNF was identified with restriction enzyme digestion and DNA sequencing. The SCs were isolated from rhesus monkeys, cultured and purified. The SCs were transfected with the recombinant retrovirus vector containing hGDNF gene. The mRNA and protein expressions of hGDNF were analyzed by real-time fluorescent quantitative PCR and Western blot. Results The PCR product of hGDNF coding sequence was a 596 bp specific segment. The recombinant eukaryotic expression vector was digested into a 596 bp specific segment by specific restriction enzyme and another segment. The 596 bp segment confirmed by DNA sequencing was consistent with hGDNF sequence on GenBank. Restriction enzyme digestion and sequencing results showed that the coding sequence of hGDNF was successfully inserted into the recombinant retrovirus vector and the mRNA and protein expressions of hGDNF were significantly higher in transfected SCs than non-transfected SCs (P lt; 0.05). Conclusion The rhesus monkey SCs modified with hGDNF gene are successfully constructed and hGDNF can be released continuously and stably, which will provide a foundation for the further research about cell therapy of hGDNF-SCs in the repair of injured nerve.