Tumor treating fields (TTF) therapy is an innovative tumor treatment modality. Currently, the TTF devices predominantly employ insulated ceramic electrodes as the electric field transmission medium, resulting in low energy transfer efficiency of the electric field and poor portability of the devices. This study proposed an innovative TTF transmission mode and independently designed a conducted-electrode TTF cell culture dish utilizing inert titanium materials. The electric field conduction characteristics were verified through finite element simulations and experimental tests. Finally, based on the self-manufactured conducted-electrode TTF cell culture dish, experiments on the proliferation inhibition of U87 tumor cells by TTF were conducted. The results demonstrated that under an applied TTF voltage of 10 V and frequency of 200 kHz, the electric field intensities within the medium for conducted and insulated electrodes are approximately 2.5 V/cm and 0.7 V/cm, respectively. Compared to conventional insulated TTF systems, the conducted-electrode TTF configuration exhibited a lower electrode voltage drop and a higher electric field intensity in the culture medium, indicating superior electric field transmission efficiency. Following 36 hours of treatment with conducted-electrode TTF on U87 cells, the proliferation inhibition rate reached approximately 50%, demonstrating effective suppression of tumor cell growth. This approach presents a potential direction for optimizing TTF treatment modality and device design.
ObjectiveTo explore the preparation method, physical and chemical properties, and biocompatibility of a conductive composite scaffold based on polypyrrole/silk fibroin (PPy/SF) fiber with " shell-core” structure, and to provide a preliminary research basis for the application in the field of tissue engineered neuroscience.Methods The conductive fibers with " shell-core” structure were prepared by three-dimensional printing combined with in-situ polymerization. PPy/SF fiber-based conductive composite scaffolds were formed by electrospinning. In addition, core-free PPy conductive fibers and SF electrospinning fibers were prepared. The stability, biomechanics, electrical conductivity, degradation performance, and biological activity of each material were tested to analyze the comprehensive properties of fiber-based conductive composite scaffolds.ResultsCompared with pure core-free PPy conductive fibers and SF electrospinning fibers, the PPy/SF fiber-based conductive composite scaffolds with " shell-core” structure could better maintain the stability performance, enhance the mechanical stretchability of the composite scaffolds, maintain long-term electrical activity, and improve the anti-degradation performance. At the same time, PPy/SF conductive composite scaffolds were suitable for NIH3T3 cells attachment, conducive to cell proliferation, and had good biological activity.ConclusionPPy/SF fiber-based conductive composite scaffolds meet the needs of conductivity, stability, and biological activity of artificial nerve grafts, and provide a new idea for the development of a new generation of high-performance and multi-functional composite materials.