west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "SUN Xueao" 1 results
  • Finite element analysis of adding one transverse screw for Pauwels type Ⅲ femoral neck fractures

    Objective To investigate whether adding 1 transverse screw (TS) to the triangular parallel cannulated screw (TPCS) fixation has a mechanical stability advantage for Pauwels type Ⅲ femoral neck fractures by conducting finite element analysis on four internal fixation methods. Methods Based on CT data of a healthy adult male volunteer’s femur, three Pauwels type Ⅲ femoral neck fracture models (Pauwels angle 70°, Pauwels angle 80°, and Pauwels angle 70° combined with bone defect) were constructed using Mimics 21.0 software and SolidWorks 2017 software. Four different internal fixation models were built at the same time, including TPCS, TPCS+TS, three cross screws (TCS), and TPCS+medial buttress plate (MBP). The mechanical stability of different models under the same load was compared by finite element analysis. Results The femoral model established in this study exhibited a maximum stress of 28.62 MPa, with relatively higher stress concentrated in the femoral neck. These findings were comparable to previous studies, indicating that the constructed femoral finite element model was correct. The maximum stress of internal fixation in finite element analysis showed that TCS was the lowest and TPCS+MBP was the highest in Pauwels angle 70° and 80° models, while TPCS+TS was the lowest and TCS was the highest in Pauwels angle 70° combined with bone defect model. The maximum displacement of internal fixation in each fracture model was located at the top of the femoral head, with TCS having the highest maximum displacement of the femur. The maximum stress of fracture surface in finite element analysis showed that TCS was the lowest and TPCS was the highest in the Pauwels angle 70° model, while TPCS+MBP was the lowest and TPCS/TCS were the highest in the Pauwels angle 80° model and the Pauwels angle 70° combined with bone defect model, respectively. The maximum displacement of fracture surfece analysis showed that TPCS+MBP was the lowest and TCS was the highest in Pauwels angle 70° and 80° models, while TPCS+TS was the lowest and TCS was the highest in Pauwels angle 70° combined with bone defect model. Conclusion For Pauwels type Ⅲ femoral neck fractures, the biomechanical stability of TPCS+TS was superior to that of TPCS alone and TCS, but it has not yet reached the level of TPCS+MBP.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content