ObjectiveTo investigate the expression pattern and significance of Sonic Hedgehog (Shh) signaling pathway by observing whether the Shh signaling pathway components express in the adult rat after spinal cord injury (SCI). MethodsSixty-four healthy male Sprague-Dawley rats were randomly divided into normal group (group A, 8 rats), sham group (group B, 8 rats), and SCI group (group C, 48 rats). In group A, the rats served as controls without any treatment; a decompressive laminectomy was performed on T7-9 levels without SCI in group B; and modified Allen's method was used to make SCI model in group C. Basso Beattie Bresnahan (BBB) scale was used to assess the hind limb motor function at 12 hours, 1 day, 3 days, 7 days, 14 days, and 21 days after SCI; the immunofluorescence staining, real-time PCR, and Western blot were performed to detect the mRNA and protein expression levels of Shh and Glioma-associated oncogene homolog-1 (Gli-1) in SCI zone. ResultsThe BBB score slowly increased with time in group C, but the scores at each time point in group C were significantly lower than those in group A and group B (P<0.05). The results of immunofluorescence staining showed that Shh and Gli-1 rapidly increased after SCI in astrocytes. Real-time PCR and Western blot showed that the relative expression levels of Shh and Gli-1 mRNA and protein were gradually increased in group C and reached a maximum at 7 days. In addition, the relative expression levels of Shh and Gli-1 mRNA and protein in group C were significantly higher than those in group A and group B (P<0.05). On the other hand, compared with group A, the expression of Gli-1 protein was reduced in the cytoplasm but increased in nucleus in group C. ConclusionAstrocytes synthesize and secrete Shh and Gli-1 signaling molecules after SCI, both Shh and Gli-1 significantly up-regulate and exhibit dynamic changes, which suggests Shh signaling pathway may be involved in nerve cell regeneration after SCI.
Objective To investigate the feasibil ity of establ ishment of physiological micturition reflex arc by simultaneously reconstructing the sensory and the motorial nerve of atonic bladder after spinal cord injury. Methods Eight 1-year-old Beegle male canine were selected, weighing 7-12 kg. The left side was the experimental side, while the right side wasthe control side. Epidural microanastomosis of vertebral canal of the left L7 ventral root to S2 ventral root and L7 dorsal root to S2 dorsal root was performed to reconstruct the sensory and the motorial function of atomic bladder. The right side was used as a control without treatment. The new motor-to-motor, and sensory-to-sensory physiological bladder reflex pathway were establ ished after 12 months of axonal regeneration. Then S1-4 segmental spinal cord was destroyed for preparation of complete paraplegia. The electrophysiological examination and the bladder pressure were detected before and after paraplegia. The canine micturition was observed for 3 months after paraplegia. Nurohistological observation was performed after canine sacrifice. Results Of 8 canine, 7 canine survived. After paraplegia, canines displayed urinary incontinence and frequent micturition at first, nocturnal continence was achieved gradually without frequent micturition after 1 month. Urinary infection at different degrees occurred in 3 canines and was controlled after Norfloxacin was administered orally. The bladder pressure increased to (1.00 ± 0.13) kPa, (0.90 ± 0.12) kPa after trains of stimulation (300 mV, 0.3 ms, 20 Hz, 5 seconds) of S2 dorsal root at the experimental side before and after paraplegia respectively, showing no significant difference (P gt; 0.05). It increased to (1.90 ± 0.10) kPa after the same train of stimulation of S2 dorsal root at control side. There was significant difference between the experimental side and the control side (P lt; 0.01). Single stimulation (300 mV, 0.3 ms) of the S2 dorsal root at the experimental side resulted in evoked potentials recorded from the left S2 ventral root before and after paraplegia. Before and after paraplegia, the ampl itudes of the evoked potentials were (0.68 ± 0.11) mV and (0.60 ± 0.08) mV respectively, showing no significant difference (P gt; 0.05). It was (1.21 ± 0.13) mV while stimulating at the control side. There was significant difference between the experimental side and the control side (P lt; 0.01). Neurofibra of L7 dorsal and ventral root grew into S2 dorsal and ventral root on tissue sl ice under l ight microscope. Conclusion Reconstruction of the bladder physiological micturition reflex arc is feasible by anastomosis of sacral dorsal and ventral root below injured spinal plane with the suprasacral survival dorsal and ventral root above the plane respectively for restoration of atonic bladder after spinal cord injury.
Objective To make a mouse model of traumatic spinal cord injury (SCI) by Allen’s weight dropping (WD),which might be helpful for further research on the mechanism of SCI. Methods A total of 180 healthy female mice, weighing 17 - 23 g (20 g on average), were randomized into 4 groups (n=45 per group): the experimental groups of A, B and C and the control group of D. Experimental groups were distinguished by the amount of weight or the height from which the weight was dropped onto an impounder resting on the dura (2.0 × 2.5 g·cm, 2.5 × 3.0 g·cm, 3.0 × 5.0 g·cm). In group D, neural scute was opened only and spinal cord was exposed without SCI. The recovery of the lower extremity was observed at various time points (0,6 and 12 hours, 1 and 3 days, 1, 2, 4 and 8 weeks) by using the Basso mouse scale (BMS) scoring system, motor evoked potentials (MEP) and histological observation. Results MEP displayed that the incubation period of N1 wave was extended in group B after 6 hours and in group C after 12 hours. As time passed by, the incubation periods of N1 wave in group A, group B and group C began to shorten. The incubation period in group A was close to normal at 4 weeks (2.40 ± 0.12) ms, and there was no significant difference compared with group D (P gt; 0.05). The incubation period in group B was close to normal at 8 weeks (2.96 ± 0.15) ms, and there was no significant difference compared with group D (P gt; 0.05). The incubation period in group C was still relatively high at 8 weeks (3.76 ± 0.13) ms, and there was a significant difference compared with group D (P﹤0.05). Both hind l imbs of all mice were paralytic instantly after SCI, the score of main BMS was 0 point; the score of main BMS was close to 0 at the first 3 days after SCI, the score of main BMS of group A was 8.00 ± 0.13 and group B was 7.50 ± 0.31 at 8 weeks;the score of main BMS of group A was 5.45 ± 0.12 at 1 week and group B was 5.45 ± 0.15 at 2 weeks which were significant difference compared with group D (P﹤0.05).There were significant differences among groups A, B and C after 1 week of SCI (P lt; 0.05), and group C was lower than the others(P﹤0.01). The score of adjuvant BMS of group A was 10.12 ± 0.76 at 2 weeks and group B was 9.85 ± 0.55 at 8 weeks which was no significant difference compared with the group D at the same time (P gt; 0.05). Histological observation showed hemorrhage, cellular edema, inflammatory cell infiltration, nerve cell swell and solution of Nissl body 12 hours after SCI in group C. As time passed by, the number of nerve cells decreased, the gl ial cell prol iferated and Nissl body vanished. There was much gl ial cell prol iferation and cavitation 2 weeks after SCI in group C. The nerve cell decrease and cavitation in group B was sl ighter than that in group C, and group A was the sl ightest. In group D, there was no obvious change of the number of cells during the observation apart from sl ight edema in early period. Conclusion The mouse model precisely reflects the pathological and physiological features and law of change after different degrees of SCI, and can be used as a standard of mouse model of traumatic SCI by Allen’s WD.
ObjectiveTo fabricate the bionic scaffolds of rat spinal cord by combining three dimensional (3D) printer and 3D software, so as to lay the foundation of theory and technology for the manufacture of scaffolds by using biomaterials. MethodsThree female Sprague Dawley rats were scanned by 7.0T MRI to obtain the shape and position data of the cross section and gray matter of T8 to T10 spinal cord. Combined with data of position and shape of nerve conduction beam, the relevant data were obtained via Getdata software. Then the 3D graphics were made and converted to stereolithography (STL) format by using SolidWorks software. Photosensitive resin was used as the materials of spinal cord scaffolds. The bionic scaffolds were fabricated by 3D printer. ResultsMRI showed that the section shape of T8 to T10 segments of the spinal cord were approximately oval with a relatively long sagittal diameter of (2.20±0.52) mm and short transverse diameter of (2.05±0.24) mm, and the data of nerve conduction bundle were featured in the STL format. The spinal cord bionic scaffolds of the target segments made by 3D printer were similar to the spinal cord of rat in the morphology and size, and the position of pores simulated normal nerve conduction of rat spinal cord. ConclusionSpinal cord scaffolds produced by 3D printer which have similar shape and size of normal rat spinal cord are more bionic, and the procedure is simple. This technology combined with biomaterials is also promising in spinal cord repairing after spinal cord injury.
ObjectiveTo review the advances of the role of mitochondrial dysfunction in the spinal cord injury (SCI) and its relevant treatments. MethodsFocusing on various mechanisms of mitochondrial dysfunction, recent relevant literature at home and abroad was identified to summarize the therapeutic strategies for SCI. ResultsMitochondrial dysfunction is mainly manifested in abnormalities in mitochondrial energy metabolism, mitochondrial oxidative stress, mitochondrial-mediated apoptosis, mitophagy, mitochondrial permeability transition, and mitochondrial biogenesis, playing a vital role in the development of SCI. Drug that enhanced mitochondrial function have been proved beneficial for the treatment of SCI. ConclusionMitochondrial dysfunction can serve as a potential therapeutic target for SCI, providing ideas and basis for the development of SCI therapeutic candidates in the future.
Objective To investigate the effect of chondroitinase ABC (ChABC) on the expression of growth associated protein 43 (GAP-43) and gl ial fibrillary acidic protein (GFAP) after spinal cord injury (SCI) in rats. Methods A total of 150 adult female SD rats, weighing 250-300 g, were randomly divided into ChABC treatment group (group A), sal ine treatment group (group B), and sham operation group (group C) with 50 rats in each group. In groups A and B, the rats were made the SCI models and were treated by subarachnoid injection of ChABC and sal ine; in group C, the rats were not treated as a control. At 1, 3, 7, 14, and 21 days after operation, the Basso, Beattie, and Bresnahan (BBB) score system was used toevaluate the motion function, and immunofluorescent histochemical staining was used to observe the expressions of GAP-43 and GFAP. Results At different time points, the BBB scores of groups A and B were significantly lower than those of group C (P lt; 0.05); there was no significant difference in BBB score between groups A and B after 1, 3, and 7 days of operation (P gt; 0.05), but the BBB score of group A was significantly higher than that of group B after 14 and 21 days of operation (P lt; 0.01). At different time points, the GAP-43 and GFAP positive neurons of groups A and B were significantly higher than those of group C (P lt; 0.05). After 14 and 21 days of operation, the GAP-43 positive neurons of group A were more than those of group B (P lt; 0.01). After 7, 14, and 21 days of operation, the GFAP positive neurons of group A were significantly less than those of group B (P lt; 0.01). Conclusion ChABC can degrade gl ial scar, improve the microenvironment of the injured region and enhance the expression of GAP-43, which promotes axonal growth and extension.
Objective To investigate the possibility of constructing eukaryotic expression vector for human glial derived neurotrophic factor (hGDNF), transfecting it to spinal cord tissue of rats so as to treat acute spinal cord injury. Methods The eukaryotic expression vector pcDNA3-hGDNF was constructed by recombinant DNA technique, transfected into glial cell and neuron of spinal cord by liposome DOTAP as experimental group. In control group, mixture of empty vector and liposome was injected. The mRNA and protein expressions of hGNDF were detected by RT-PCR and Western blot. Results After the recombinant eukaryotic expression vector for hGDNF was digested with Hind III and XbaⅠ, electrophoresis revealed 400 bp fragment for hGDNF gene and 5 400 bp fragment for pcDNA3 vector. In the transfected spinal cord tissue, the mRNA and protein expressions of hGDNF gene were detected with RT-PCR and Western blot. Conclusion The constructed eukaryotic expression vector pcDNA3hGDNF could be expressed in the transfected spinal cord tissue of rat, so it provide basis for gene therapy of acute spinal cord injury.
Objective To investigate the diagnostic value of MR imaging in cervical spinal canal stenosis combined with spinal cord injury. Methods From August 1998 to May 2008, 41 patients with cervical spinal canal stenosis and spinal cord injury were treated, including 34 males and 7 females aged 32-71 years (average 53.4 years, 27 patients being older than 60 years). Patients’ MRI data were retrospectively analyzed. Injury was caused by fall ing from height in 8 cases, traffic accidentin 19 cases, crush due to heavy objects in 3 cases and other reasons in 11 cases. The time from injury to operation ranged from 2 hours to 3 years. There were 12 cases of anterior spinal cord injury syndrome, 23 of central spinal cord syndrome and 6 of Brown-Sequard syndrome. JOA score of spinal cord function was 3-11 points (average 6.6 points). Results MR imaging diagnosis before operation showed abnormal signal changes within the spinal cord in 37 cases (41 sites), anterior and posterior longitudinal l igaments and discs (APLLD) injury in 28 cases (30 sites) and signal of edema and hematoma signals in anterior surface of cervical spines (EBC) in 34 cases (36 sites). Diagnosis during operation revealed edemas braises, contusions tears of posterior soft tissue in 18 cases (20 sites), appendix fracture in 6 cases (7 sites), formation of EBC in 20 cases (23 sites), APLLD injury in 34 cases (44 sites), intervertebral instabil ity without the rupture of l igament and intervertebral disc in 7 cases (10 sites). Significant difference was evident between the MRI diagnosis before operation and the intraoperative discoveries (P lt; 0.05). Conclusion The MR imaging diagnosis before operation do not correspond to the intraoperative discoveries, indicating that MRI diagnosis fails to make a relatively comprehensive and accurate diagnosis. So it is advisable to make a diagnosis based on cl inical symptoms.
To introduce a micturition alert device dedicated to neurogenic bladders. Methods The design and mechanism of the micturition alert device were explained, the effectiveness was tested in a cranine experiment. Results The micturition alert device consisted of a permanent magnet sutured on the anterior bladder wall and a warning unit sutured on theinferior abdominal wall. The warning unit was assembled with a compass-l ike switch, a power supply, a buzzer and a power switch. Bladder volume determined the position of the magnet which determined the magnetic field at the point of the warning unit. The change of magnetic field was read by the warning unit. With increasing bladder volume from initial state to 200 mL in 8 dogs, the magnet moved cranially 32.8 mm averagely (from 31.3 mm to 34.1 mm) and the hand of warning unit turned 52° (from 47° to 57°). The value of the warning unit was correlated positively to the bladder volume (r =1.0, P lt; 0.01). If the desired bladder volume was determined as 150 mL to activate the warning unit to alarm in advance, the fullness of bladder was 147.6 mL averagely from135 mL to 160 mL, with an error less than 15 mL (10%). Conclusion The micturition alert device including a warning unit and permanent magnet could monitor bladder volume continuously and alarm in time for the patients with loss of micturition desire. It is simple, easily-made, cheap and conveniently used. It is worth of further study.
OBJECTIVE: To investigate a animal model of spinal cord injury in different degrees of impact. METHODS: A new weight-drop device was designed with the character of controlled degree of impact and time. After thirty-five rats underwent different degrees of impact, their motor function and pathological changes were observed. RESULTS: In control group, the rats could walk after reviving, and the micro-structure of spinal cord was normal. With 0.5 mm depth of impact, the rats also could walk, and the micro-structure of spinal cord did not change obviously. With 0.8 mm depth of impact, the rats could walk after several days of injury and only slight damage could be found in spinal cord. When the impact depth increased to 1.0 or 1.5 mm, the rats were paralyzed completely and could not walk after four weeks of injury. Severe injury was observed in spinal cord. CONCLUSION: This animal model of spinal cord injury is based on different degrees of impact. It has stable and repetitive characters for the research on spinal cord injury.