west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Three-dimensional printing technique" 20 results
  • RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN JOINT SURGERY

    ObjectiveTo summarize the application status of three-dimensional (3-D) printing technique in joint surgery and look forward to the future research directions. MethodsThe recent original articles about the application and research of 3-D printing technique in joint surgery were extensively reviewed and analyzed. ResultsIn clinical applications, 3-D printing technique can provide "tailored" treatment and custom implants for patients, which helps doctors to perform the complex operations easier and more safely; in fundamental research, tissue engineered scaffolds with desirable external shape and internal organization are easily fabricated with 3-D printing technique, which can meet the demand of cell adherence and proliferation. Even more, cells may be deposited with the biomaterials during the printing. ConclusionWith the development of medical imaging, digital medicine and new materials, 3-D printing technique will have a wider range of applications in joint surgery.

    Release date: Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN CORRECTION OF MANDIBULAR PROGNATHISM

    ObjectiveTo establish a method to prefabricate titanium plate with three-dimensional (3-D) printing technique for correction of mandibular prognathism in sagittal splint ramous osteotomy (SSRO). MethodsBetween January 2012 and May 2013, 12 patients with mandibular prognathism (Angle III malocclusion) were treated. Among them, 9 cases were male and 3 cases were female. Their ages ranged from 19 to 35 years (mean, 25.6 years). With the 3-D facial CT data of these patients, 3-D printer was used to print the models for preoperational simulation. SSRO was performed on 3-D models, and the titanium plates were prefabricated on the models after the distal segments were moved backward and rotated according to occlusal splint. During operations, the proximal segments were fixed to distal segments by the prefabricated titanium plates. 3-D CT scans were taken to examine the temporomandibular joint position changes before operation and at 6 months after operation. ResultsThe skull models were manufactured by 3-D printing technique, and the titanium plates were reshaped on the basis of them. Twenty-four prefabricated titanium plates were placed during operations, and they all matched with the bone segments well. Evaluation of 3-D CT scans showed that the temporomandibular joint position had no change. All patients were followed up 7-12 months (mean, 10.6 months). The face type and dental articulation were improved greatly. All cases obtained satisfactory opening function and occlusion. ConclusionWith the titanium plate fabricated based on 3-D models, surgeons are able to improve or refine surgical planning so that the operation can be performed according to preoperative simulation precisely and the complications, such as dislocation of temporomandibular joint, can be prevented.

    Release date: Export PDF Favorites Scan
  • APPLICATION OF DIGITAL DESIGN AND THREE-DIMENSIONAL PRINTING TECHNIQUE ON INDIVIDUALIZED MEDICAL TREATMENT

    ObjectiveTo summarize the latest research development of the application of digital design and three-dimensional (3-D) printing technique on individualized medical treatment. MethodsRecent research data and clinical literature about the application of digital design and 3-D printing technique on individualized medical treatment in Xi'an Jiaotong University and its cooperation unit were summarized, reviewed, and analyzed. ResultsDigital design and 3-D printing technique can design and manufacture individualized implant based on the patient's specific disease conditions. And the implant can satisfy the needs of specific shape and function of the patient, reducing dependence on the level of experience required for the doctor. So 3-D printing technique get more and more recognition of the surgeon on the individualized repair of human tissue. Xi'an Jiaotong University is the first unit to develop the commercial 3-D printer and conduct depth research on the design and manufacture of individualized medical implant. And complete technological processes and quality standards of product have been developed. ConclusionThe individualized medical implant manufactured by 3-D printing technique can not only achieve personalized match but also meet the functional requirements and aesthetic requirements of patients. In addition, the individualized medical implant has the advantages of accurate positioning, stable connection, and high strength. So 3-D printing technique has broad prospects in the manufacture and application of individualized implant.

    Release date: Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN REPAIR AND RECONSTRUCTION OF MAXILLOFACIAL BONE DEFECT

    ObjectiveTo explore the application of three-dimensional (3-D) printing technique in repair and reconstruction of maxillofacial bone defect. MethodsThe related literature on the recent advance in the application of 3-D printing technique for repair and reconstructing maxillofacial bone defect was reviewed and summarized in the following aspects:3-D models for teaching, preoperative planning, and practicing; surgical templates for accurate positioning during operation; individual implantable prosthetics for repair and reconstructing the maxillofacial bone defect. Results3-D printing technique is profoundly affecting the treatment level in repair and reconstruction of maxillofacial bone defect. Conclusion3-D printing technique will promote the development of the repair and reconstructing maxillofacial bone defect toward more accurate, personalized, and safer surgery.

    Release date: Export PDF Favorites Scan
  • RESEARCH PROGRESS OF THREE-DIMENSIONAL PRINTING TECHNIQUE FOR SPINAL IMPLANTS

    ObjectiveTo summarize the current research progress of three-dimensional (3D) printing technique for spinal implants manufacture. MethodsThe recent original literature concerning technology, materials, process, clinical applications, and development direction of 3D printing technique in spinal implants was reviewed and analyzed. ResultsAt present, 3D printing technologies used to manufacture spinal implants include selective laser sintering, selective laser melting, and electron beam melting. Titanium and its alloys are mainly used. 3D printing spinal implants manufactured by the above materials and technology have been successfully used in clinical. But the problems regarding safety, related complications, cost-benefit analysis, efficacy compared with traditional spinal implants, and the lack of relevant policies and regulations remain to be solved. Conclusion3D printing technique is able to provide individual and customized spinal implants for patients, which is helpful for the clinicians to perform operations much more accurately and safely. With the rapid development of 3D printing technology and new materials, more and more 3D printing spinal implants will be developed and used clinically.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Research progress of three-dimensional printing technique in foot and ankle surgery

    Objective To review the current research progress of three-dimensional (3-D) printing technique in foot and ankle surgery. Methods Recent literature associated with the clinical application of 3-D printing technique in the field of medicine, especially in foot and ankle surgery was reviewed, summarized, and analyzed. Results At present, 3-D printing technique has been applied in foot and ankle fracture, segmental bone defect, orthosis, corrective surgery, reparative and reconstructive surgery which showed satisfactory effectiveness. Currently, there are no randomized controlled trials and the medium to long term follow-up is necessary. Conclusion The printing materials, time, cost, medical ethics, and multi-disciplinary team restricted the application of 3-D printing technique, but it is still a promising technique in foot and ankle surgery.

    Release date:2017-07-13 11:11 Export PDF Favorites Scan
  • RESEARCH STATUS AND FUTURE OF IN SITU THREE-DIMENSIONAL PRINTING TECHNIQUE

    ObjectiveTo review the current research status of in situ three-dimensional (3-D) printing technique and future trends. MethodsRecent related literature about in situ 3-D printing technique was summarized, reviewed, and analyzed. ResultsBased on the cl inical need for surgical repair, in situ 3-D printing technique is in the preliminary study, mainly focuses on in situ dermal repair and bone and cartilage repair, and succeeds in experiments, but there are still a lot of problems for cl inical application. ConclusionWith the development of in situ 3-D printing technique, it will provide patients with real-time and in situ digital design and 3-D printing treatment with a timely and minimally invasive surgical repair process. It will be widely used in the future.

    Release date: Export PDF Favorites Scan
  • Effect of three-dimensional printing guide plate on improving femoral rotational alignment and patellar tracking in total knee arthroplasty

    ObjectiveTo investigate the effect of three-dimensional (3D) printing guide plate on improving femoral rotational alignment and patellar tracking in total knee arthroplasty (TKA).MethodsBetween January 2018 and October 2018, 60 patients (60 knees) with advanced knee osteoarthritis who received TKA and met the selection criteria were selected as the study subjects. Patients were randomly divided into two groups according to the random number table method, with 30 patients in each group. The TKA was done with the help of 3D printing guide plate in the guide group and following traditional procedure in the control group. There was no significant difference in gender, age, disease duration, side, and preoperative hip-knee-ankle angle (HKA), posterior condylar angle (PCA), patella transverse axis-femoral transepicondylar axis angle (PFA), Hospital for Special Surgery (HSS) score, and American Knee Society (AKS) score (P>0.05).ResultsAll incisions healed by first intention and no complications related to the operation occurred. All patients were followed up 10-12 months, with an average of 11 months. HSS score and AKS score of the two groups at 6 months after operation were significantly higher than those before operation (P<0.05), but there was no significant difference between the two groups (P>0.05). Postoperative X-ray films showed that the prosthesis was in good position, and no prosthesis loosening or sinking occurred during follow-up. HKA, PCA, and PFA significantly improved in the two groups at 10 months after operation compared with those before operation (P<0.05). There was no significant difference in HKA at 10 months between the two groups (t=1.031, P=0.307). PCA and PFA in the guide group were smaller than those in the control group (P<0.05).ConclusionApplication of 3D printing guide plate in TKA can not only correct the deformity of the knee joint and alleviate the pain symptoms, but also achieve the goal of the accurate femoral rotation alignment and good patellar tracking.

    Release date:2020-04-15 09:18 Export PDF Favorites Scan
  • APPLICATION OF THREE-DIMENSIONAL PRINTING TECHNIQUE IN ORTHOPAEDICS

    ObjectiveTo review the current progress of three-dimensional (3-D) printing technique in the clinical practice, its limitations and prospects. MethodsThe recent publications associated with the clinical application of 3-D printing technique in the field of surgery, especially in orthopaedics were extensively reviewed. ResultsCurrently, 3-D printing technique has been applied in orthopaedic surgery to aid diagnosis, make operative plans, and produce personalized prosthesis or implants. Conclusion3-D printing technique is a promising technique in clinical application.

    Release date: Export PDF Favorites Scan
  • Effectiveness of three-dimensional-printed microporous titanium prostheses combined with flap implantation in treatment of large segmental infectious bone defects in limbs

    Objective To analyze the effectiveness of single three-dimensional (3D)-printed microporous titanium prostheses and flap combined prostheses implantation in the treatment of large segmental infectious bone defects in limbs. MethodsA retrospective analysis was conducted on the clinical data of 76 patients with large segmental infectious bone defects in limbs who were treated between January 2019 and February 2024 and met the selection criteria. Among them, 51 were male and 25 were female, with an age of (47.7±9.4) years. Of the 76 patients, 51 had no soft tissue defects (single prostheses group), while 25 had associated soft tissue defects (flap combined group). The single prostheses group included 28 cases of tibial bone defects, 11 cases of femoral defects, 5 cases of humeral defects, 4 cases of radial bone defects, and 3 cases of metacarpal, or carpal bone defects, with bone defect length ranging from 3.5 to 28.0 cm. The flap combined group included 3 cases of extensive dorsum of foot soft tissue defects combined with large segmental metatarsal bone defects, 19 cases of lower leg soft tissue defects combined with large segmental tibial bone defects, and 3 cases of hand and forearm soft tissue defects combined with metacarpal, carpal, or radial bone defects, with bone defect length ranging from 3.8 to 32.0 cm and soft tissue defect areas ranging from 8 cm×5 cm to 33 cm×10 cm. In the first stage, vancomycin-loaded bone cement was used to control infection, and flap repair was performed in the flap combined group. In the second stage, 3D-printed microporous titanium prostheses were implanted. Postoperative assessments were performed to evaluate infection control and bone integration, and pain release was evaluated using the visual analogue scale (VAS) score. Results All patients were followed up postoperatively, with an average follow-up time of (35.2±13.4) months. In the 61 lower limb injury patients, the time of standing, walk with crutches, and fully bear weight were (2.2±0.6), (3.9±1.1), and (5.4±1.1) months, respectively. The VAS score at 1 year postoperatively was significantly lower than preoperative one (t=−10.678, P<0.001). At 1 year postoperatively, 69 patients (90.8%) showed no complication such as infection, fracture, prosthesis displacement, or breakage, and X-ray films indicated good integration at the prosthesis-bone interface. According to the Paley scoring system for the healing of infectious bone defects, the results were excellent in 37 cases, good in 29 cases, fair in 3 cases, and poor in 7 cases. In the single prostheses group, during the follow-up, there was 1 case each of femoral prostheses fracture, femoral infection, and tibial infection, with a treatment success rate of 94.1% (48/51). In lower limb injury patients, the time of fully bear weight was (5.0±1.0) months. In the flap combined group, during the follow-up, 1 case of tibial fixation prostheses screw fracture occurred, along with 2 cases of recurrent foot infection in diabetic patients and 1 case of tibial infection. The treatment success rate was 84.0% (21/25). The time of fully bear weight in lower limb injury patients was (5.8±1.2) months. The overall infection eradication rate for all patients was 93.4% (71/76). Conclusion The use of 3D-printed microporous titanium prostheses, either alone or in combination with flaps, for the treatment of large segmental infectious bone defects in the limbs results in good effectiveness with a low incidence of complications. It is a feasible strategy for the reconstruction of infectious bone defects.

    Release date:2025-05-13 02:15 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content