【Abstract】ObjectiveTo evaluate the value of MR imaging with a contrast-enhanced multi-phasic isotropic volumetric interpolated breath-hold examination (VIBE) in diagnosis of primary liver carcinoma. MethodsThirty-two consecutive patients with surgical-pathologically confirmed 42 foci of primary carcinoma of liver underwent comprehensive MR examination of the upper abdomen, routine two-dimensional (2D) T1WI and T2WI images were acquired before administration of Gd-DTPA for contrast enhancement. Then, contrast-enhanced multi-phasic VIBE was acquired followed by 2D T1WI images. The lesion appearances on hepatic arterial, portal venous and equilibrium phases of VIBE sequence were carefully observed along with delineation of hepatic arterial and portal venous structures. The lesion detection rates and lesion characterization ability were compared among various MR sequences. Results33(78.6%), 30(71.4%), 38(90.5%) and 42(100%) foci were displayed respectively on T2WI, non-enhanced T1WI, enhanced T1WI and enhanced 3D-VIBE images (P<0.05). The hepatic arterial anatomy of 30 patients (93.8%) and the portal venous structure of 31 patients (96.9%) were clearly depicted on enhanced 3D-VIBE images. Using MIP and MPR reconstruction techniques, the feeding arteries of 14 foci and draining vein of 12 foci were clearly displayed.ConclusionHigh-quality 3D-VIBE images are not only better than 2D images in lesion detection and characterization for primary liver carcinoma, but also able to provide much more information about hepatic vascular anatomy.
ObjectiveTo evaluate the application value of three-dimensional (3D) reconstruction in preoperative surgical diagnosis of new classification criteria for lung adenocarcinoma, which is helpful to develop a deep learning model of artificial intelligence in the auxiliary diagnosis and treatment of lung cancer.MethodsThe clinical data of 173 patients with ground-glass lung nodules with a diameter of ≤2 cm, who were admitted from October 2018 to June 2020 in our hospital were retrospectively analyzed. Among them, 55 were males and 118 were females with a median age of 61 (28-82) years. Pulmonary nodules in different parts of the same patient were treated as independent events, and a total of 181 subjects were included. According to the new classification criteria of pathological types, they were divided into pre-invasive lesions (atypical adenomatous hyperplasia and and adenocarcinoma in situ), minimally invasive adenocarcinoma and invasive adenocarcinoma. The relationship between 3D reconstruction parameters and different pathological subtypes of lung adenocarcinoma, and their diagnostic values were analyzed by multiplanar reconstruction and volume reconstruction techniques.ResultsIn different pathological types of lung adenocarcinoma, the diameter of lung nodules (P<0.001), average CT value (P<0.001), consolidation/tumor ratio (CTR, P<0.001), type of nodules (P<0.001), nodular morphology (P<0.001), pleural indenlation sign (P<0.001), air bronchogram sign (P=0.010), vascular access inside the nodule (P=0.005), TNM staging (P<0.001) were significantly different, while nodule growth sites were not (P=0.054). At the same time, it was also found that with the increased invasiveness of different pathological subtypes of lung adenocarcinoma, the proportion of dominant signs of each group gradually increased. Meanwhile, nodule diameter and the average CT value or CTR were independent risk factors for malignant degree of lung adenocarcinoma.ConclusionImaging signs of lung adenocarcinoma in 3D reconstruction, including nodule diameter, the average CT value, CTR, shape, type, vascular access conditions, air bronchogram sign, pleural indenlation sign, play an important role in the diagnosis of lung adenocarcinoma subtype and can provide guidance for personalized therapy to patients in clinics.
ObjectiveTo further understand the anatomical characteristics and rules of left upper lingual pulmonary artery.MethodsCT data of 120 patients (82 males, 38 females, median age of 65 years ranging 36-78 years) with pulmonary nodules from December 2018 to August 2020 in our hospital were retrospectively analyzed. The anatomic characteristics of the lingual segment of the upper left lung were analyzed by three-dimensional reconstruction. ResultsMediastinal lingual artery appeared in 34 of the 120 patients, accounting for 28.4%. There were 26 patientsof mixed mediastinal/interlobar type, 8 patients of pure mediastinal lingual artery, and 92.3% (24/26) mixed mediastinal/interlobar type blood vessel contained A4b. Fifty-eight (58/120, 48.3%) patients had interlobar type A4+5 type, the rest were two-branches type. And 22 patients of A4 and A5 type accounted for the most two-branches type (22/28, 78.6%). The single-branch type was located at the distal end of A6 in 54 (54/58, 93.1%) patients, originated from the proximal end of A6 in 4 patients, and originated from the basilar artery in 6 patients. The two-branches type was at the distal end of A6 accounting for 50.0% (14/28).ConclusionMediastinal lingual artery is more common than expected, accounting for 28.4%, among which mixed lingual artery is more prevalent, usually located in the first pulmonary trunk, and mostly follows the principle of proximity to supply relevant lung tissues. The location of the interlobar branches in the pulmonary trunk can be at the distal or proximal end of A6, care should be taken to avoid damaging adjacent structures.
Objective To investigate the application of three-dimensional (3D) reconstruction technology in preoperative planning for anterolateral thigh flap transplantation. Methods A retrospective analysis was performed on the clinical data of 11 patients with skin and soft tissue defects treated with free anterolateral thigh flap transplantation between January 2022 and January 2024, who met the selection criteria. There were 8 males and 3 females, aged 34-70 years (mean, 50.8 years). Causes of injury included traffic accidents (4 cases), machine trauma (3 cases), heavy object crush injury (3 cases), and tumor (1 case). The time from injury to flap repair ranged from 7 to 35 days (mean, 23 days). Preoperatively, the patients’ CT angiography images were imported into Mimics21.0 software. Through the software’s segmentation, editing, and reconstruction functions, 3D visualization and measurement of the vascular pedicle, perforators, wound size, and morphology were performed to plan the flap harvest area, contour, vascular pedicle length, and anastomosis site, guiding the implementation of flap transplantation. Results The length of the vascular pedicle needed by the recipient site was (9.1±0.9) cm, and the maximum length of vascular pedicle in the donor area was (10.6±0.6) cm, with a significant difference (t=4.230, P<0.001). The operation time ranged from 220 to 600 minutes (mean, 361.9 minutes). One patient had poor wound healing at the recipient site, which healed after dressing changes. All 11 flaps survived well without necrosis. All patients were followed up 6-19 months (mean, 11 months). Four flaps showed bulkiness and underwent secondary debulking; the remaining flaps had good contour and soft texture. The donor sites healed well, with no sensory disturbance around the incision or complications such as walking impairment.ConclusionPreoperative planning using CT angiography data and 3D reconstruction software can effectively determine the flap area, contour, required vascular pedicle length, anastomosis site, and whether vascular grafting is needed, thereby guiding the successful execution of anterolateral thigh flap transplantation.
Objective To investigate the cl inical results of the flap pedicled with collateral branch of descendingrarus of lateral circumflex femoral artery with digital three-dimensional reconstruction technique for lower l imb soft tissue defects. Methods Between March 2009 and January 2010, 7 patients with lower l imb soft tissue defects were treated with free flap pedicled with collateral branch of descending rarus of lateral circumflex femoral artery. There were 6 males and 1 female with an age range from 6 to 51 years. They were injured by traffic accident (4 cases), or by object hit from height (3 cases). The locations were foot in 2 cases, ankle in 2 cases, and anterior tibia in 3 cases. The disease duration was 8 hours to 40 days (mean, 20 days). All the cases compl icated by exposure of tendons or bones. The areas of soft tissue defect ranged from 12 cm × 7 cm to 20 cm × 14 cm. Free flaps were transplanted at 4 to 16 days after symptomatic treatment. Before operation, all the flaps were designed with digital three-dimensional reconstruction technique. The size of flaps ranged from 15 cm × 9 cm to 22 cm × 16 cm The donor sites were closed directly in all cases. Results All the flaps survived. The wounds and incisions at donor sites healed by first intention. All the patients were followed up 6 to 12 months. The texture, appearance, and function of the flaps were satisfactory, and no compl ication occurred. All the flaps had protective sensation, which could meet the requirement of the daily l ife. The function of ankle was satisfactory with normal walk; the extension was 19-22° and the flexion was 30-36°. No obvious scar formed at donor sites. Conclusion The flap pedicled with collateral branch of descending rarus of lateral circumflex femoral artery has rel iable blood supply, easy operation, l ittle influence on the donor site, and high success rate with digital three-dimensional reconstruction technique. It is an excellent option for repairing lower l imb soft tissue defects.
Objective To review the application progress of digital technology in auricle reconstruction. Methods The recently published literature concerning the application of digital technology in auricle reconstruction was extensively consulted, the main technology and its specific application areas were reviewed. Results Application of digital technology represented by three-dimensional (3D) data acquisition, 3D reconstruction, and 3D printing is an important developing trend of auricle reconstruction. It can precisely guide auricle reconstruction through fabricating digital ear model, auricular guide plate, and costal cartilage imaging. Conclusion Digital technology can improve effectiveness and decrease surgical trauma in auricle reconstruction. 3D bioprinting of ear cartilage future has bright prospect and needs to be further researched.
ObjectiveTo evaluate the safety and application value of three-dimensional reconstruction for localization of pulmonary nodules in thoracoscopic lung wedge resection.MethodsThe clinical data of 96 patients undergoing thoracoscopic lung wedge resection in our hospital from January 2019 to August 2020 were retrospectively reviewed and analyzed, including 30 males and 66 females with an average age of 57.62±12.13 years. The patients were divided into two groups, including a three-dimensional reconstruction guided group (n=45) and a CT guided Hook-wire group (n=51). The perioperative data of the two groups were compared.ResultsAll operations were performed successfully. There was no statistically significant difference between the two groups in the failure rate of localization (4.44% vs. 5.88%, P=0.633), operation time [15 (12, 19) min vs. 15 (13, 17) min, P=0.956], blood loss [16 (10, 20) mL vs. 15 (10, 19) mL, P=0.348], chest tube placement time [2 (2, 2) d vs. 2 (2, 2) d, P=0.841], resection margin width [2 (2, 2) cm vs. 2 (2, 2) cm, P=0.272] or TNM stage (P=0.158). The complications of CT guided Hook-wire group included pneumothorax in 2 patients, hemothorax in 2 patients and dislodgement in 4 patients. There was no complication related to puncture localization in the three-dimensional reconstruction guided group.ConclusionBased on three-dimensional reconstruction, the pulmonary nodule is accurately located. The complication rate is low, and it has good clinical application value.
Objective To study the feasibility of virtual intercondylar notchplasty by applying MRI two-dimensional (2D) images to reconstruct three-dimensional (3D) images and measure the size of intercondylar notch. Methods Thirty healthy volunteers who had no knee joint disease and surgery history were selected. There were 15 females and 15 males with an age range of 20-30 years, weight range of 45-74 kg, and height range of 150-185 cm. They were divided into male group and female group, and the knees of each group were divided into 2 subgroups (the left group and right group). MRI scan of the left and right knees was performed, and the 2D images of MRI were imported into Mimics10.01 medical image control system for 3D reconstruction. The related anatomical data as follows were measured from the 3D digital model and analyzed by statistical software: notch width (NW), condylar width (CW), and notch width index (NWI). Then the 3D knee images of patients with anterior cruciate ligament (ACL) injury were collected between January and March 2010, and 4 patients with narrow intercondylar notch (NWI≤0.2) were selected for reconstructing the 3D model of the knee and simulating the intercondylar notch plasty. Then, the volume of osteotomy in 3D model was calculated and applied in the ACL reconstruction surgery, and whether the graft had impingement with intercondylar notch or not was evaluated. Results There were significant differences in NW and CW between male group and female group (P≤lt;≤0.05), but no significant difference was found in the NWI (P≤gt;≤0.05). And there was no significant difference in NW, CW, and NWI between the left and right knees both in male group and female group (P≤gt;≤0.05). After ACL reconstruction and intercondylar notchplasty, the shape of intercondylar notch became normal (NWI≤gt;≤0.22), no impingement occurred between the graft and intercondylar notch under arthroscopy within 3-month follow-up. Conclusion The shape of intercondylar notch of 3D model based on MRI 2D images is similar to the real intercondylar notch. NWI is one of important indexes which can reflect the narrow level of intercondylar notch. The virtual intercondylar notchplasty may provide preoperative plan and guidence for ACL reconstruction operation to avoid the impingement between graft and intercondylar notch after surgery.
ObjectiveTo explore the value and role of post-processing techniques such as 3D reconstruction in the online education mode in neurosurgery undergraduate clinical probation teaching.MethodsA retrospective analysis method was used to collect 120 clinical 5-year medical students who were trained in neurosurgery at West China Hospital of Sichuan University from January 2019 to May 2020, including 40 students receiving traditional imaging materials offline (control group 1), 40 students being taught on image post-processing technology offline (control group 2), and 40 students being taught on-line image post-processing technology during the novel coronavirus epidemic (observational group). The students’ scores of departmental rotation examination and feedback survey results on teaching satisfaction were collected, and multiple comparison was conducted between the observational group and the two control groups respectively.ResultIn the control group 1, the control group 2, and the observational group, the theoretical test scores were 36.80±3.22, 38.17±2.61, and 38.97±2.79, respectively; the case analysis scores were 37.05±2.01, 38.40±2.62, and 39.25±2.88, respectively; the total scores were 73.85±5.06, 76.57±4.29, and 78.10±4.53, respectively; the scores of interest in teaching were 84.47±3.71, 86.05±2.87, and 86.82±2.60, respectively; the scores of mastery of knowledge were 82.85±4.39, 84.90±2.72, and 85.78±2.36, respectively; and the scores of overall satisfaction with teaching were 84.17±3.45, 85.97±2.64, and 86.37±2.59, respectively. The differences among the three groups were all statistically significant (P<0.05). The observational group differed significantly from the control group 1 in all the above scores (P<0.05), while did not differed from the control group 2 in any of the above scores (P>0.05).ConclusionsIn neurosurgery internship activities, the online application of image post-processing techniques such as 3D reconstruction will help students establish 3D spatial concepts, better understand the brain anatomy, and improve students’ academic performance and acceptance.
Objective To explore the histochemical staining for distinguishing and local izing nerve fibers and fascicles at histological level in three-dimensional reconstruction of peri pheral nerves. Methods The right median nerve was harvested from one fresh cadaver and embedded in OCT compound. The sample was serially horizontally sl iced with 6 μm thickness. All sections were stained with Karnovsky-Roots method (group A, n=30) firstly and then stained with toluidine blue (group B, =28) and Ponceau 2R (group C, n=21) in proper sequence. The results of each step were taken photos (× 100). After successfully stitching, the two-dimensional panorama images were compared, including texture feature, the number and aver gray level of area showing acetylchol inesterase (AchE) activity, and result of auto microscopic medical image segmentation. Results In groups A, B, and C, the number of AchE-positive area was (21.63 ± 4.06)× 102, (20.64 ± 3.51)× 102, and (20.54 ± 5.71)× 102, respectively, showing no significant difference among 3 groups (F=0.64, P=0.54); the mean gray level was (1.41 ± 0.06)× 102, (1.10 ± 0.05)× 102, and (1.14 ± 0.07)× 102, respectively, showing significant differences between group A and groups B and C (P lt; 0.001). In the image of group A, only AchE-positive area was stained; in the image of group B, myelin sheath was obscure; and in the image of group C, axons and myelin sheath could be indentified, the character of nerve fibers could be distinguished clearly and accurately, and the image segmentation of fascicles could be achieved easier than other 2 images. Conclusion The image of Karnovsky-Roots-toluidine blue-Ponceau 2R staining has no effect on the AchE-positive area in the image of Karnovsky-Roots staining and shows better texture feature. This improved histochemical process may provide ideal image for the three-dimensional reconstruction of peri pheral nerves.