Objective To explore the effect of xue-shuan-tong(panax notoginsang saponins,PNS)or isovalaemic haemodilution(IHD)and PNS combining IHD treatment on activities of fibrinolysis and hemorrheology in patients with retinal vein occlusion (RVO). Methods Seventy-three patients with RVO were allocated at random to 3 groups which were treated with PNS,IHD and PNS combining IHD.The activities of t-PA and PAI,rheological parameters and visual acuity before and after treatment were observed. Results At the end of treatment,significantly increased activity of t-PA and decrease of PAI was found in combined treatment group and PNS group,but the difference before and after treatment was not significant in IHD group.Furthermore,except the plasma viscosity in IHD group,the other hemorrheological parameters in all the petients of 3 groups revealed to be improving.One month after treatment,the parameters return completely to normal in both PNS and IHD groups; while the whole blood apparent relative viscosity in low shear rate,RBC aggregation and RBC deformability maintained still in lower level,and also the visual acuity resumed better and quicker in combined group. Conclusion Combined treatment of PNS and IHD can both regulate the activity of fibrinolysis and decrease the blood viscosity of patients with RVO for a period of relatively long time and increase the effect of treatment. (Chin J Ocul Fundus Dis,1998,14:7-9)
Objectives To study the relationship between matrix metalloproteinase-9 (MMP-9) and hemorrhagic transformation (HT) in ischemic stroke patients and provide evidence for the further clinical studies, thrombolytic therapy selection, and application of MMP inhibitors to clinical practice to extend the windows for thrombolytic therapy. Methods The studies on relationship between MMP-9 and hemorrhagic transformation in ischemic stroke were identified, in which HT was followed-up based on plasma level of MMP-9 or comparison of plasma level of MMP-9 was conducted based on HT or not, regardless of language of publication and type of design. MEDLINE (1966-Jan. 2006), EMBASE (1966-Apr. 2006), CNKI (1977-Feb.2006), and Wanfang database (1989-2005) were searched and the references lists of eligible studies were manually searched. Two reviewers independently evaluated the quality of studies and extracted data. The data were analyzed using the RevMan 4.2. and SPSS11.0 softwares. Results Six trials fulfilled the inclusion criteria, including 558 patients, 130 of them developed hemorrhagic transformation. The heterogeneity between studies was statistically significant; (Plt;0.0001). We didn’t pool the data of studies of plasma MMP-9 level. Most of the studies showed that the plasma MMP-9 level in HT or in a certain type of HT was higher than that in non-HT patients. The result of subgroup analysis showed that the plasma MMP-9 level was independently associated with HT, summary OR=14.45, 95%CI (4.90, 43.65). Conclusions The values of plasma MMP-9 in HT or in a certain type of HT are higher than that in non-HT. MMP-9 may independently be a risk of hemorrhagic transformation. The sample size of the included studies is small. So the conclusions need to be confirmed with further studies.
ObjectiveTo compare the clinical effects of urokinase thrombolytic therapy for optic artery occlusion (OAO) and retinal artery occlusion (RAO) caused by facial microinjection with hyaluronic acid and spontaneous RAO.MethodsFrom January 2014 to February 2018, 22 eyes of 22 patients with OAO and RAO caused by facial microinjection of hyaluronic acid who received treatment in Xi'an Fourth Hospital were enrolled in this retrospective study (hyaluronic acid group). Twenty-two eyes of 22 patients with spontaneous RAO were selected as the control group. The BCVA examination was performed using the international standard visual acuity chart, which was converted into logMAR visual acuity. FFA was used to measure arm-retinal circulation time (A-Rct) and filling time of retinal artery and its branches (FT). Meanwhile, MRI examination was performed. There were significant differences in age and FT between the two groups (t=14.840, 3.263; P=0.000, 0.003). The differecens of logMAR visual acuity, onset time and A-Rct were not statistically significant between the two groups (t=0.461, 0.107, 1.101; P=0.647, 0.915, 0.277). All patients underwent urokinase thrombolysis after exclusion of thrombolytic therapy. Among the patients in the hyaluronic acid group and control group, there were 6 patients of retrograde ophthalmic thrombolysis via the superior pulchlear artery, 6 patients of retrograde ophthalmic thrombolysis via the internal carotid artery, and 10 patients of intravenous thrombolysis. FFA was reviewed 24 h after treatment, and A-Rct and FT were recorded. Visual acuity was reviewed 30 days after treatment. The occurrence of adverse reactions during and after treatment were observed. The changes of logMAR visual acuity, A-Rct and FT before and after treatment were compared between the two groups using t-test.ResultsAt 24 h after treatment, the A-Rct and FT of the hyaluronic acid group were 21.05±3.42 s and 5.05±2.52 s, which were significantly shorter than before treatment (t=4.569, 2.730; P=0.000, 0.000); the A-Rct and FT in the control group were 19.55±4.14 s and 2.55±0.91 s, which were significantly shorter than before treatment (t=4.114, 7.601; P=0.000, 0.000). There was no significant difference in A-Rct between the two groups at 24 h after treatment (t=1.311, P=0.197). The FT difference was statistically significant between the two groups at 24 h after treatment (t=4.382, P=0.000). There was no significant difference in the shortening time of A-Rct and FT between the two groups (t=0.330, 0.510; P=0.743, 0.613). At 30 days after treatment, the logMAR visual acuity in the hyaluronic acid group and the control group were 0.62±0.32 and 0.43±0.17, which were significantly higher than those before treatment (t=2.289, 5.169; P=0.029, 0.000). The difference of logMAR visual acuity between the two groups after treatment was statistically significant (t=2.872, P=0.008). The difference in logMAR visual acuity before and after treatment between the two groups was statistically significant (t=2.239, P=0.025). No ocular or systemic adverse reactions occurred during or after treatment in all patients. ConclusionsUrokinase thrombolytic therapy for OAO and RAO caused by facial microinjection with hyaluronic acid and spontaneous RAO is safe and effective, with shortening A-Rct, FT and improving visual acuity. However, the improvement of visual acuity after treatment of OAO and RAO caused by facial microinjection with hyaluronic acid is worse than that of spontaneous RAO.
Objective To evaluate the clinical effect of Nd:YAG laser embolysis combined urokinase thrombolysis therapy for branch retinal artery occlusion. Methods Thirty-four eyes of 34 patients with branch or hemiretinal artery occlusion (RAO) were studied. All patients were confirmed according to the diagnosis criteria of RAO at acute stage, disease course ranged from 12 hours to nine days. Local retinal edema and the yellowish white embolus within the retinal arteriole could be observed by color photograph and fundus fluorescein angiography (FFA) examination. Nd:YAG laser therapy was given to all eyes, which focused on the embolus by an ocular contact lens. The laser pulse was delivered directly and gradually by 0.3-0.9 mJ according to embolus condition. Fundus photographs and FFA were taken before and immediately after the laser treatment. On the next day after laser treatment, all patients received urokinase thrombolysis therapy through intravenous drip of 100 000200 000IU per time by two times for five consecutive days. Follow-up time ranged from two to three days after drug treatment and all patients accepted FFA, visual acuity and visual field examination. According to early angiography images of fluorescence filling, the recovery will be graded into full recovery, great recovery, partial recovery and invalid. Results After laser treatment, most eyes showed immediate recovery of blood flow in the occluded arteriole in fundus examination. Complete, great, and partial recovery were found in 13 eye (38.2%), 11 eyes (32.4%), and five eyes (14.7%) respectively by FFA examination; five eyes (14.7%) did not response to the treatment. After urokinase thrombolysis therapy, complete, great, and partial recovery were found in 16 eye (47.1%), 15 eyes (44.1%), and three eyes (8.8%). The difference of visual acuity was statistically significant before and after the combined treatment (chi;2=30.7,P<0.05). In most cases, visual field defect showed lighter than before. No systemic complications were observed during the combined treatment. Conclusion Nd:YAG laser embolysis combined urokinase thrombolysis therapy for branch retinal artery occlusion is effective and relatively safe.
Objective To explore the clinical presentation and diagnosis and treatment of prehepatic portal hypertension (PPH) and discuss its surgical strategies. Methods Forty-six cases of PPH treated in the 2nd Artillery General Hospital and Peking Union Medical College Hospital from January 2000 to May 2009 were analyzed retrospectively, including 2 cases of Abernethy abnormality. All patients were evaluated by indirect portal vein angiography, CT angiography and (or) portal duplex system Doppler ultrasonography before treament. Surgical strategies included: 23 cases with meso-caval shunt, 8 cases with splenectomy and spleno-renal vein shunt, 1 case with porta-caval shunt, 2 cases with paraumbilical vein-jugular vein shunt, 3 cases with portal azygous disconnection, 1 cases with splenectomy and portal azygous disconnection, 1 case with sigmoidostomy and closed the fistula of sigmoid six months later, 1 case with resection of part of small intestine due to acute extensive thrombosis of portal vein system, 4 cases with selective superior mesenteric artery and (or) splenic artery thrombolytic infusion therapy, 2 cases remained no-surgical option and underwent conservative treatment. Results Forty-four patients were followed-up from 2 months to 5 years, average of 23.4 months, one patient without surgical treatment was lost. Satisfactory outcomes were obtained in 34 patients with various shunts, which expressed as a release of hypersplenism and gastrointestinal hemorrhage. Two cases were treated with meso-caval shunt because of rehemorrhage in month 13 and 24 and one died in month 8 after disconnection, one died on day 40 after thrombolytic therapy due to putrescence of intestines, one who remained no-surgical option underwent hemorrhage 4 months later, and then went well by conservative treatment. Conclusion The key of treatment of PPH is to reduce the pressure of hepatic portal vein. Surgical managements of shunt and selective superior mesenteric artery and (or) splenic artery thrombolytic infusion therapy are safe and effective, but individual treatment strategy should be performed.
ObjectiveTo systematically review the correlation between atrial fibrillation and prognosis of patients with ischemic stroke after intravenous thrombolysis. MethodsLiterature search was carried out in PubMed, EMbase, Web of Science, The Cochrane Library (Issue 4, 2014), CBM and WanFang Data up to April 2014 for the domestic and foreign cohort studies on atrial fibrillation and prognosis of patients with ischemic stroke after intravenous thrombolysis. Two reviewers independently screened literature according to inclusion and exclusion criteria, extracted data, and assessed methodological quality of included studies. Then meta-analysis was performed using RevMan 5.2. ResultsA total of 7 cohort studies were finally included involving 69 017 cases. The results of meta-analysis showed that, compared with patients without atrial fibrillation, atrial fibrillation reduced 3-month favourable nerve function of patients with atrial fibrillation (OR=0.85, 95%CI 0.73 to 0.98, P=0.03) but did not influence the risk of death after intravenous thrombolysis (OR=1.47, 95%CI 0.75 to 2.86, P=0.26); and increased the risks of intracranial haemorrhagic transformation (OR=1.36, 95%CI 1.26 to 1.47, P < 0.001) and symptomatic intracranial hemorrhage after intravenous thrombolysis (OR=1.43, 95%CI 1.02 to 1.99, P=0.04). ConclusionFor patients with ischemic stroke, atrial fibrillation does not influence the risk of death, but it increases the risks of intracranial hemorrhage, and worsens 3-month favourable nerve function of after intravenous thrombolysis. For those patients, more assessment before intravenous thrombolysis and more monitoring after intravenous thrombolysis are necessary. Due to limited quality and quantity of the included studies, the abovementioned conclusion still needs to be verified by conducting more high quality studies.
Objective To investigate the efficacy and the safety of external therapy of ultrasound (ETUS) enhancing thrombolysis on the experimental retinal vein occlusion. Methods The effect of ETUS enhanced thrombolysis and the impact of ultrasound energy and exposure were investigated respectively after both eyes of 51 rabbits with retinal branch vein occlusion created by photodynamic initiated thrombosis were divided into 4 groups. The first 2 groups are the ETUS groups, including one group (15 rabbits) underwent intravenous injection with urokinase (UK) (1700-2200 UK dissolved into 20 ml normal saline), and other group (12 rabbits) underwent intravenous injection with normal saline. In these 2 groups, each rabbit received ETUS treatment (1.0 W/cm2, 20 min) in one eye and the fellow eye did not which was as the control. The latter 2 groups are the energy and duration of ultrasound groups, and 12 rabbits in each group underwent ETUS with the energy of 0.7 and 1.0 W/cm2 respectively. Each of the 2 groups was divided into 3 subgroups (8 rabbits in each) according to the radiated durations (8, 14, and 20 minutes). All of the eyes except the control ones underwent ETUS with 1 MHz ultrasound and 100 Hz pulsed ultrasound once a day for 3 days. Fundus fluorescein angiography (FFA) was used to detect the vascular condition 4 days after ETUS, and at the 15th day, retinal light microscopy and electron microscopy were performed. Results The vascular recanalization rate in ETUS+UK treatment group was 66.7%, which is obviously higher than which in single UK group (20.0%, P=0.025), normal saline group (8.3%, P=0.005), and ETUS+ normal saline group (8.3%, P=0.005). The vascular recanalization rates in groups with different energy of ultrasound increased obviously as the radiated durations increased (P=0.006, 0.001), while no apparent effect of energy of ultrasound on the vascular recanalization rate was found in the groups with different radiated duration (Pgt;0.05). The eyes which had undergone ETUS treatment had retinal tissue damage and ultrastructure changes of the retinal ganglion cells (RGC), and deteriorated as the radiated duration increased. Conclusion ETUS may enhance the thrombolysis induced by urokinase in experimental retinal vein occlusion. Simultaneously, ETUS can lead to the damage of retinal tissue and changes of the ultrastructure of RGC. (Chin J Ocul Fundus Dis, 2007, 23: 166-169)
ObjectiveTo investigate the therapeutic method and effect of thrombolysis via superselective ophthalmic artery catheterization treating central retinal artery occlusion (CRAO).Methods9 patients with CRAO were treated by urokinase infusion via superselective ophthalmic artery catheterization with Seldinger technique.ResultsIn the 9 patients, the visual acuity was improved to different extent in 8, and remained unchanged in 1. No complications was found during the treatment in any patients.ConclusionsThrombolysis via super-selective ophthalmic artery catheterization for CRAO can improve the visual acuity of most of the patients in different degrees. No positive relation exists in clinical therapeutic effect, time of onset, quantity of urokinase and the visual acuity before the treatment. The method of thrombolysis via super-selective ophthalmic artery catheterization for CRVO is safe and reliable.(Chin J Ocul Fundus Dis, 2005,21:22-24)
ObjectiveTo observe the clinical effect of super-selective ophthalmic artery or selective carotid artery thrombolytic therapy for central retinal artery occlusion (CRAO). MethodsTwelve CRAO patients (12 eyes) were enrolled in this study. The patients included 7 males and 5 females. The age was ranged from 19 to 68 years old, with an average of (50.0±3.5) years. The disease duration was from 8 to 72 hours, with a mean of 18 hours. All the patients were received the treatment of super-selective ophthalmic artery or selective carotid artery thrombolysis with urokinase (total 0.20-0.4 million U) and injection of papaverine 30 mg. Five patients received the treatment of super-selective ophthalmic artery thrombolytic therapy, 7 patients received the treatment of selective carotid artery thrombolytic therapy (4 patients because of the financial issues, 3 patients because of thin ophthalmic artery). According to the visual acuity of post-treatment and pre-treatment, the therapeutic effects on vision were defined as effective markedly (improving three lines or more), effective (improving two lines) and no effect (no change or a decline). According to the arm-retinal circulation time (A-Rct) and filling time of retinal artery and its branches (FT) on fluorescence fundus angiography (FFA), the therapeutic effects on retinal circulation were defined as effective markedly (A-Rct 15 s, FT 2 s), effective (A-Rct was improved but in the range of 16-20 s, FT was in 3-8 s) and no effect (A-Rct was improved but 21 s, FT 9 s). ResultsThe vision changes showed effective markedly in 5 eyes (41.7%), effective in 5 eyes (41.7%), no effect in 2 eyes (16.6%). The total therapeutic efficiency on vision was 83.4%. The retinal circulation was improved in all eyes after treatment, including effective markedly in 8 eyes (67.0%), effective in 4 eyes (33.0%). The total therapeutic efficiency on retinal circulation was 100.0%. No complications occurred in these 12 patients during the treatment or follow-up, such as puncture site hematoma, intracranial hemorrhage, cerebral embolism, eye movement abnormalities, retinal and vitreous hemorrhage. ConclusionSuper-selective ophthalmic artery and selective carotid artery thrombolytic therapy were effective in the treatment of CRAO.
Objective To observe the clinical effect of intravenous thrombolytic therapy for central retinal artery occlusion (CRAO) with poor effect after the treatment of arterial thrombolytic therapy. Methods Twenty-four CRAO patients (24 eyes) with poor effect after the treatment of arterial thrombolytic therapy were enrolled in this study. There were 11 males and 13 females. The age was ranged from 35 to 80 years, with the mean age of (56.7±15.6) years. There were 11 right eyes and 13 left eyes. The visual acuity was tested by standard visual acuity chart. The arm-retinal circulation time (A-Rct) and the filling time of retinal artery and its branches (FT) were detected by fluorescein fundus angiography (FFA). The visual acuity was ranged from light sensation to 0.5, with the average of 0.04±0.012. The A-Rct was ranged from 18.0 s to 35.0 s, with the mean of (29.7±5.8) s. The FT was ranged from 4.0 s to 16.0 s, with the mean of (12.9±2.3) s. All patients were treated with urokinase intravenous thrombolytic therapy. The dosage of urokinase was 3000 U/kg, 2 times/d, adding 250 ml of 0.9% sodium chloride intravenous drip, 2 times between 8 - 10 h, and continuous treatment of FFA after 5 days. Comparative analysis was performed on the visual acuity of the patients before and after treatment, and the changes of A-Rct and FT. Results After intravenous thrombolytic therapy, the A-Rct was ranged from 16.0 s to 34.0 s, with the mean of (22.4±5.5) s. Among 24 eyes, the A-Rct was 27.0 - 34.0 s in 4 eyes (16.67%), 18.0 - 26.0 s in 11 eyes (45.83%); 16.0 - 17.0 s in 9 eyes (37.50%). The FT was ranged from 2.4 s to 16.0 s, with the mean of (7.4±2.6) s. Compared with before intravenous thrombolytic therapy, the A-Rct was shortened by 7.3 s and the FT was shortened by 5.5 s with the significant differences (χ2=24.6, 24.9; P<0.01). After intravenous thrombolytic therapy, the visual acuity was ranged from light sensation to 0.6, with the average of 0.08±0.011. There were 1 eye with vision of light perception (4.17%), 8 eyes with hand movement/20 cm (33.33%), 11 eyes with 0.02 - 0.05 (45.83%), 2 eyes with 0.1 - 0.2 (8.33%), 1 eye with 0.5 (4.17%) and 1 eye with 0.6 (4.17%). The visual acuity was improved in 19 eyes (79.17%). The difference of visual acuity before and after intravenous thrombolytic therapy was significant (χ2=7.99, P<0.05). There was no local and systemic adverse effects during and after treatment. Conclusion Intravenous thrombolytic therapy for CRAO with poor effect after the treatment of arterial thrombolytic therapy can further improve the circulation of retinal artery and visual acuity.