Objective To explore the effect of tissue engineered cartilage reconstructed by using sodium alginate hydrogel and SIS complex as scaffold material and chondrocyte as seed cell on the repair of full-thickness articular cartilage defects. Methods SIS was prepared by custom-made machine and detergent-enzyme treatment. Full-thickness articularcartilage of loading surface of the humeral head and the femoral condyle obtained from 8 New Zealand white rabbits (2-3weeks old) was used to culture chondrocytes in vitro. Rabbit chondrocytes at passage 4 cultured by conventional multipl ication method were diluted by sodium alginate to (5-7) × 107 cells/mL, and then were coated on SIS to prepare chondrocyte-sodium alginate hydrogel-SIS complex. Forty 6-month-old clean grade New Zealand white rabbits weighing 3.0-3.5 kg were randomized into two groups according to different operative methods (n=20 rabbits per group), and full-thickness cartilage defect model of the unilateral knee joint (right or left) was establ ished in every rabbit. In experimental group, the complex was implanted into the defect layer by layer to construct tissue engineered cartilage, and SIS membrane was coated on the surface to fill the defect completely. While in control group, the cartilage defect was filled by sodium alginate hydrogel and was sutured after being coated with SIS membrane without seeding of chondrocyte. General condition of the rabbits after operation was observed. The rabbits in two groups were killed 1, 3, 5, 7, and 9 months after operation, and underwent gross and histology observation. Results Eight rabbits were excluded due to anesthesia death, wound infection and diarrhea death. Sixteen rabbits per group were included in the experiment, and 3, 3, 3, 3, and 4 rabbits from each group were randomly selected and killed 1, 3, 5, 7, and 9 months after operation, respectively. Gross observation and histology Masson trichrome staining: in the experimental group, SIS on the surface of the implant was fused with the host tissue, and the inferface between them disappeared 1 month after operation; part of the implant was chondrified and the interface between the implant and the host tissue was fused 3 months after operation; the implant turned into fibrocartilage 5 months after operation; fiber arrangement of the cartilage in theimplant was close to that of the host tissue 7 months after operation; cartilage fiber in the implant arranged disorderly andactive cell metabol ism and prol iferation were evident 9 months after operation. While in the control group, no repair of thedefect was observed 9 months after operation. No obvious repair was evident in the defects of the control group within 9months after operation. Histomorphometric evaluation demonstrated that the staining intensity per unit area of the reparative tissue in the defect of the experimental group was significant higher than that of the control group at each time point (P lt; 0.05), the chondrification in the experimental group was increased gradually within 3, 5, and 7 months after operation (P lt; 0.05), and it was decreased 9 months after operation comparing with the value at 7 months after operation (P lt; 0.05). Conclusion Constructed by chondrocyte-sodium alginate hydrogel-SIS in complex with surficial suturing of SIS membrane, the tissue engineered cartilage can in-situ repair cartilage defect, promote the regeneration of cartilage tissue, and is in l ine with physiological repair process of articular cartilage.
Objective To explore heterotopic chondrogenesis of canine myoblasts induced by cartilage-derived morphogenetic protein 2 (CDMP-2) and transforming growth factor β1 (TGF-β1) which were seeded on poly (lactide-co-glycolide) (PLGA) scaffolds after implantation in a subcutaneous pocket of nude mice. Methods Myoblasts from rectus femoris of 1-year-old Beagle were seeded on PLGA scaffolds and cultured in medium containing CDMP-2 and TGF-β1 for 2 weeks in vitro. Then induced myoblasts-PLGA scaffold, uninduced myoblasts-PLGA scaffold, CDMP-2 and TGF-β1-PLGA scaffold, and simple PLGA scaffold were implanted into 4 zygomorphic back subcutaneous pockets of 24 nude mice in groups A, B, C, and D, respectively. At 8 and 12 weeks, the samples were harvested for general observation, HE staining and toluidine blue staining, immunohistochemical staining for collagen type I and collagen type II; the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were determined by RT-PCR, the glycosaminoglycans (GAG) content by Alician blue staining, and the compressive elastic modulus by biomechanics. Results In group A, cartilaginoid tissue was milky white with smooth surface and slight elasticity at 8 weeks, and had similar appearance and elasticity to normal cartilage tissue at 12 weeks. In group B, few residual tissue remained at 8 weeks, and was completely degraded at 12 weeks. In groups C and D, the implants disappeared at 8 weeks. HE staining showed that mature cartilage lacuna formed of group A at 8 and 12 weeks; no cartilage lacuna formed in group B at 8 weeks. Toluidine blue staining confirmed that new cartilage cells were oval and arranged in line, with lacuna and blue-staining positive cytoplasm and extracellular matrix in group A at 8 and 12 weeks; no blue metachromatic extracellular matrix was seen in group B at 8 weeks. Collagen type I and collagen type II expressed positively in group A, did not expressed in group B by immunohistochemical staining. At 8 weeks, the mRNA expressions of collagen type I, collagen type II, Aggrecan, and Sox9 were detected by RT-PCR in group A at 8 and 12 weeks, but negative results were shown in group B. The compressive elastic modulus and GAG content of group A were (90.79 ± 1.78) MPa and (10.20 ± 1.07) μg/mL respectively at 12 weeks, showing significant differences when compared with normal meniscus (P lt; 0.05). Conclusion Induced myoblasts-PLGA scaffolds can stably express chondrogenic phenotype in a heterotopic model of cartilage transplantation and represent a suitable tool for tissue engineering of menisci.
【Abstract】 Objective To develop a novel cartilage acellular matrix (CACM) scaffold and to investigate its performance for cartilage tissue engineering. Methods Human cartilage microfilaments about 100 nm-5 μm were prepared after pulverization and gradient centrifugation and made into 3% suspension after acellularization treatment. After placing the suspension into moulds, 3-D porous CACM scaffolds were fabricated using a simple freeze-drying method. The scaffolds were cross-l inked by exposure to ultraviolet radiation and immersion in a carbodiimide solution 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysucinimide. The scaffolds were investigated by histological staining, SEM observation and porosity measurement, water absorption rate analysis. MTT test was also done to assess cytotoxicity of the scaffolds. After induced by conditioned medium including TGF-β1, canine BMSCs were seeded into the scaffold. Cell prol iferation and differentiation were analyzed using inverted microscope and SEM. Results The histological staining showed that there are no chondrocytefragments in the scaffolds and that toluidine blue, safranin O and anti-collagen II immunohistochemistry staining werepositive. The novel 3-D porous CACM scaffold had good pore interconnectivity with pore diameter (155 ± 34) μm, 91.3% ± 2.0% porosity and 2 451% ± 155% water absorption rate. The intrinsic cytotoxicity assessment of novel scaffolds using MTT test showed that the scaffolds had no cytotoxic effect on BMSCs. Inverted microscope showed that most of the cells attached to the scaffold. SEM micrographs indicated that cells covered the scaffolds uniformly and majority of the cells showed the round or ell iptic morphology with much matrix secretion. Conclusion The 3-D porous CACM scaffold reserved most of extracellular matrix after thoroughly decellularization, has good pore diameter and porosity, non-toxicity and good biocompatibil ity, which make it a suitable candidate as an alternative cell-carrier for cartilage tissue engineering.
ObjectiveTo explore the feasibility of three-dimensional (3D) bioprinted adipose-derived stem cells (ADSCs) combined with gelatin methacryloyl (GelMA) to construct tissue engineered cartilage.MethodsAdipose tissue voluntarily donated by liposuction patients was collected to isolate and culture human ADSCs (hADSCs). The third generation cells were mixed with GelMA hydrogel and photoinitiator to make biological ink. The hADSCs-GelMA composite scaffold was prepared by 3D bioprinting technology, and it was observed in general, and observed by scanning electron microscope after cultured for 1 day and chondrogenic induction culture for 14 days. After cultured for 1, 4, and 7 days, the composite scaffolds were taken for live/dead cell staining to observe cell survival rate; and cell counting kit 8 (CCK-8) method was used to detect cell proliferation. The composite scaffold samples cultured in cartilage induction for 14 days were taken as the experimental group, and the composite scaffolds cultured in complete medium for 14 days were used as the control group. Real-time fluorescent quantitative PCR (qRT-PCR) was performed to detect cartilage formation. The relative expression levels of the mRNA of cartilage matrix gene [(aggrecan, ACAN)], chondrogenic regulatory factor (SOX9), cartilage-specific gene [collagen type Ⅱ A1 (COLⅡA1)], and cartilage hypertrophy marker gene [collagen type ⅩA1 (COLⅩA1)] were detected. The 3D bioprinted hADSCs-GelMA composite scaffold (experimental group) and the blank GelMA hydrogel scaffold without cells (control group) cultured for 14 days of chondrogenesis were implanted into the subcutaneous pockets of the back of nude mice respectively, and the materials were taken after 4 weeks, and gross observation, Safranin O staining, Alcian blue staining, and collagen type Ⅱ immunohistochemical staining were performed to observe the cartilage formation in the composite scaffold.ResultsMacroscope and scanning electron microscope observations showed that the hADSCs-GelMA composite scaffolds had a stable and regular structure. The cell viability could be maintained at 80%-90% at 1, 4, and 7 days after printing, and the differences between different time points were significant (P<0.05). The results of CCK-8 experiment showed that the cells in the scaffold showed continuous proliferation after printing. After 14 days of chondrogenic induction and culture on the composite scaffold, the expressions of ACAN, SOX9, and COLⅡA1 were significantly up-regulated (P<0.05), the expression of COLⅩA1 was significantly down-regulated (P<0.05). The scaffold was taken out at 4 weeks after implantation. The structure of the scaffold was complete and clear. Histological and immunohistochemical results showed that cartilage matrix and collagen type Ⅱ were deposited, and there was cartilage lacuna formation, which confirmed the formation of cartilage tissue.ConclusionThe 3D bioprinted hADSCs-GelMA composite scaffold has a stable 3D structure and high cell viability, and can be induced differentiation into cartilage tissue, which can be used to construct tissue engineered cartilage in vivo and in vitro.
【Abstract】 Objective The seed cells source is a research focus in tissue engineered cartilage. To observe whether the post-RNA interference (RNAi) chondrocytes could be used as the seed cells of tissue engineered cartilage. Methods Chondrocytes were separated from Sprague Dawley rats. The first passage chondrocytes were used and divided into 2 groups: normal chondrocytes (control group) and post-RNAi (experimental group). Normal and post-RNAi chondrocytes were seeded into chitosan/gelatin material and cultured in vitro to prepare tissue engineered cartilage. The contents of Aggrecan and Aggrecanase-1, 2 were measured by HE and Masson staining, scanning electron microscope (SEM), and RT-PCR. Results The histological results: no obvious difference was observed in cell number and extracellular matrix (ECM) between 2 groups at 2 weeks; when compared with control group, the secretion of ECM and the cell number increased in experimental group with time. The RT-PCR results: the expression of Aggrecan mRNA in experimental group was significantly higher than that in control group (P lt; 0.05); but the expressions of Aggrecanase-1, 2 mRNA in experimental group were significantly lower than those in control group (P lt; 0.05). The SEM results: the cell number in experimental group was obviously more than that in control group, and the cells in experimental group were conjugated closely. Conclusion The post-RNAi chondrocytes can be used as the seed cells for tissue engineered cartilage, which can secrete more Aggrecan than normal chondrocytes. But their biological activities need studying further.
Objective To investigate the feasibility of the complex of the fibrin sealant (FS) and the bone marrow mesenchymal stem cells(MSCs) to createanew cartilage in the nude mice by the issue engineering technique. Methods T he MSCs were isolated from healthy humans and were expanded in vitro. And then the MSCs were induced by the defined medium containing the transforming growth factor β1 (TGF-β1), dexamethasone, and ascorbic acid. The biomechanical properties of the chondrocytes were investigated at 7 and 14 days. The MSCs induced for 7days were collected and mixed with FS. Then, the FSMSCs mixture was injectedby a needle into the dorsum of the nude mice in the experimental group. In the tw o control groups, only FS or MSCs were injected respectively. The specimens were harvested at 6 and 12 weeks,and the ability of chondrogenesis in vivo was inve stigated by the gross observation, HE, Alcian Blue staining, and type Ⅱ collagen immunohistochemistry. Results The MSCs changed from a spindlel ike fibroblastic appearance to a polygonal shape when transferred to the defined medium, and couldbe induced to express the chondrocyte matrix. After an injection of the mixture , the cartilage-like tissue mass was formed, and the specimens were harvested from the mass at 6 and 12 weeks in the experimental group. The tissue mass at 6 we eks was smaller and relatively firm in texture, which had a distinct lacuna structure. And glycosaminoglycan (GAG) and Type II Collagen expressions were detecte d. The tissue mass at 12 weeks was bigger, firmer and glossier with the mature c hondrocytes lying in the lacuna structure. The positive Alcian blue and Collagen II immunohistochemistry stainings were ber at 12 weeks than at 6 weeks. But there was no cartilage-like tissue mass formed in the two control groups. Conclusion This study demonstrates that the fibrin sealant and the bone marrow mesenchymal stem cells can be successfully used in a constructing technique for the tissue engineered injectable cartilage.
ObjectiveTo investigate the effect of three-dimensional cultivation with dynamic compressive stimulation on promotion of cartilage growth in vitro, by constructing tissue engineered cartilage with three-dimensional porous articular cartilage extracellular matrix (ECM) scaffolds laden with rabbit chondrocytes and performing mechanical stimulation by compressive stress in bioreactor. MethodsChondrocytes of healthy adult New Zealand rabbits were isolated, and passage 2 chondrocytes were seeded onto three-dimensional porous articular cartilage ECM scaffolds for 5 days pre-cultivation, and then were divided into 2 groups:Group A continued static culture as control; group B (dynamic culture condition) underwent dynamic compressive strain stimulation (compressive strain of 15%, frequence of 1 Hz) in a bioreactor. Cell viability and distribution in scaffolds were observed; the glycosaminoglycan (GAG) content, collagen content, and total DNA content were measured after 3 weeks of culturing; and elastic modulus was evaluated by mechanical test. ResultsLaser scanning confocal microscopy indicated that cells grew well and evenly distributed in the scaffold of group B, while poor cells growth and loss of staining in the central region of the scaffolds were observed in group A. Scanning electron microscopy showed that chondrocytes possessed good adhesion, proliferation, and growth on the scaffolds of group B; while the number of chondrocytes was significantly reduced, and cells scattered in group A. Biochemical composition analysis showed that collagen, GAG, and DNA contents of cell-scaffold constructs were (675.85±27.93) μg/mg, (621.72±26.75) μg/mg, and (16.98±3.23) μg/sample in group B, and were (438.72±6.35) μg/mg, (301.63±30.51) μg/mg, and (10.18±4.39) μg/sample in group A respectively, which were significantly higher in group B than in group A (t=18.512, P=0.000;t=17.640, P=0.000;t=2.790, P=0.024). Mechanical testing indicated that the elastic modulus of group B[(0.67±0.09) MPa] was significantly higher than that of group A[(0.49±0.16) MPa] and cell-free scaffolds[(0.43±0.12) MPa] (P < 0.05). ConclusionMimetic compressive stress with three-dimensional dynamic conditions created in the bioreactor is superior to the ordinary static three-dimensional cultivation, it can provide the optimal environment for chondrocytes on the ECM scaffolds, which may be a good way to construct tissue engineered cartilage in vitro.
ObjectiveTo investigate whether subchondral bone microstructural parameters are related to cartilage repair during large osteochondral defect repairing based on three-dimensional (3-D) printing technique. MethodsBiomimetic biphasic osteochondral composite scaffolds were fabricated by using 3-D printing technique. The right trochlea critical sized defects (4.8 mm in diameter, 7.5 mm in depth) were created in 40 New Zealand white rabbits (aged 6 months, weighing 2.5-3.5 kg). Biomimetic biphasic osteochondral composite scaffolds were implanted into the defects in the experimental group (n=35), and no composite scaffolds implantation served as control group (n=5); the left side had no defect as sham-operation group. Animals of experimental and sham-operation groups were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after operation, while animals of control group were sampled at 24 weeks. Subchondral bone microstructural parameters and cartilage repair were quantitatively analyzed using Micro-CT and Wayne scoring system. Correlation analysis and regression analysis were applied to reveal the relationship between subchondral bone parameters and cartilage repair. The subchondral bone parameters included bone volume fraction (BV/TV), bone surface area fraction (BSA/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular spacing (Tb.Sp). ResultsIn the experimental group, articular cartilage repair was significantly improved at 52 weeks postoperatively, which was dominated by hyaline cartilage tissue, and tidal line formed. Wayne scores at 24 and 52 weeks were significantly higher than that at 16 weeks in the experimental group (P<0.05), but no significant difference was found between at 24 and 52 weeks (P>0.05); the scores of experimental group were significantly lower than those of sham-operation group at all time points (P<0.05). In the experimental group, new subchondral bone migrated from the surrounding defect to the centre, and subchondral bony plate formed at 24 and 52 weeks. The microstructural parameters of repaired subchondral bone followed a "twin peaks" like discipline to which BV/TV, BSA/BV, and Tb.N increased at 2 and 16 weeks, and then they returned to normal level. The Tb.Sp showed reversed discipline compared to the former 3 parameters, no significant change was found for Tb.Th during the repair process. Correlation analysis showed that BV/TV, BSA/BV, Tb.Th, Tb.N, and Tb.Sp were all related with gross appearance score and histology score of repaired cartilage. ConclusionSubchondral bone parameters are related with cartilage repair in critical size osteochondral repair in vivo. Microstructural parameters of repaired subchondral bone follow a "twin peaks" like discipline (osteoplasia-remodeling-osteoplasia-remodeling) to achieve reconstruction, 2nd week and 16th week are critical time points for subchondral bone functional restoration.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Objective To investigate the effect of allogeneic chondrocytes-calcium alginate gel composite under the intervention of low intensive pulsed ultrasound (LIPUS) for repairing rabbit articular cartilage defects. Methods Bilateral knee articular cartilage were harvested from 8 2-week-old New Zealand white rabbits to separate the chondrocytes by mechanical-collagen type II enzyme digestion. The 3rd passage chondrocytes were diluted by 1.2% sodium alginate to 5 × 106 cells/mL, then mixed with CaCl2 solution to prepare chondrocytes-calcium alginate gel composite, which was treated with LIPUS for 3 days (F0: 1 MHz; PRF: 1 kHz; Amp: 60 mW/cm2; Cycle: 50; Time: 20 minutes). An articular cartilage defect of 3 mm in diameter and 3 mm in thickness was established in both knees of 18 New Zealand white rabbits (aged 28-35 weeks; weighing, 2.1-2.8 kg), and divided into 3 groups randomly, 6 rabbits in each group: LIPUS group, common group, and model group. Defect was repaired with LIPUS-intervention gel composite, non LIPUS-intervention gel composite in LIPUS group and common group, respectively; defect was not treated in the model group. The general condition of rabbits was observed after operation. The repair effect was evaluated by gross and histological observations, immunohistochemical staining, and Wakitani score at 8 and 12 weeks after operation. Results Defect was filled with hyaline chondroid tissue and white chondroid tissue in LIPUS and common groups, respectively. LIPUS group was better than common group in the surface smooth degree and the degree of integration with surrounding tissue. Defect was repaired slowly, and the new tissue had poor elasticity in model group. Histological observation and Wakitani score showed that LIPUS group had better repair than common group at 8 and 12 weeks after operation; the repair effect of the 2 groups was significantly better than that of model group (P lt; 0.05); and significant differences in repair effect were found between at 8 and 12 weeks in LIPUS and common groups (P lt; 0.05). The collagen type II positive expression area and absorbance (A) value of LIPUS and common groups were significantly higher than those of model group (P lt; 0.05) at 8 and 12 weeks after operation, and the expression of LIPUS group was superior to that of common group at 12 weeks (P lt; 0.05); and significant differences were found between at 8 and 12 weeks in LIPUS group (P lt; 0.05), but no significant difference between 2 time points in common and model groups (P gt; 0.05). Conclusion Allogeneic chondrocytes-calcium alginate gel composite can effectively repair articular cartilage defect. The effect of LIPUS optimized allogeneic chondrocytes-calcium alginate gel composite is better.