Objective To observe multimodality imaging features of different properties in multifocal choroiditis (MFC). Methods Twenty-eight patients (51 eyes) with MFC were enrolled in this study. There were 10 males and 18 females. The patients aged from 31 to 49 years, with the mean age of (41.5±0.8) years. There were 23 bilateral patients and 5 unilateral patients. All patients underwent best corrected visual acuity (BCVA), slit-lamp biomicroscopy, indirect ophthalmoscopy, fundus colorized photography, infrared fundus photography, fundus autofluorescence (FAF), fundus fluorescein angiography (FFA) and optical coherence tomography (OCT) examinations. The lesions were classified as active inflammatory lesion, inactive inflammatory lesion, active choroidal neovascularization (CNV) and inactive CNV. The multimodality imaging features of different properties in MFC was observed. Results In fundus colour photography, the boundaries of active inflammatory lesions were blurry, while inactive inflammatory lesions had relatively clear boundaries. Secondary active CNV showed mild uplift and surrounding retinal edema; Secondary active CNV lesions showed mild uplift, retinal edema around the lesion; Secondary non-active CNV had no retinal exudate edema lesions, but had lesions fibrosis and varying degrees of pigmentation. Infrared fundus examination revealed that both active and inactive inflammatory lesions showed a uniform punctate or sheet-like fluorescence. The fluorescence of CNV lesions was not uniform; there was a bright ring around the strong fluorescence. FAF found that active inflammatory lesions showed weak autofluorescence (AF), surrounded by a strong fluorescence ring; inactive inflammatory lesions showed AF loss. Secondary active CNV lesions showed strong AF with a bright ring along the edge, and obscured fluorescence for co-occurred hemorrhagic edema; secondary non-active CNV lesions were strong AF, surrounded by a weak AF ring. FFA revealed that active inflammatory lesions showed weak fluorescence in the early stage, and fluorescence gradually increased in the late stage with slight leakage. Inactive inflammatory lesions showed typical transmitted fluorescence. Fluorescein leakage secondary to active CNV was significant; lesions secondary to inactive CNV showed scar staining. In OCT, the active inflammatory lesions showed moderately weak reflex signals in the protruding lesions under the retinal pigment epithelium (RPE). The inactive inflammatory lesions showed penetrable RPE defects or choroidal scar, it also showed clear RPE uplift lesions with a strong reflection signal. Secondary active CNV showed subretinal fluid retention; secondary non-active CNV showed RPE defects and choroidal scarring. Conclusions Active inflammatory lesions in MFC have blurred boundary, retinal edema and fluorescein leakage in FFA; inactive inflammatory lesions have clear boundary and typical transmitted fluorescence in FFA, and no retinal edema. Secondary active CNV showed subretinal fluid in OCT; and secondary non-active CNV showed RPE defects and choroidal scarring.
ObjectiveTo observe the changes in choroidal thickness in type 2 diabetes patients with diabetic retinopathy (DR). MethodsA total of 227 eyes from 150 type 2 diabetes patients were enrolled in this study. The patients included 67 males (89 eyes) and 83 females (138 eyes). The mean age was (65.6±8.0) years, and the mean diabetes duration was (12.4±6.5) years. All the patients were examined for best corrected visual acuity (BCVA), diopter, slit lamp ophthalmoscopy, indirect ophthalmoscopy and spectral domain optical coherence tomography (SD-OCT) examination. The patients were divided into non-DR (NDR group, 99 eyes), non-proliferative DR (PDR) without macular edema (ME) group (NPDR/ME-group, 64 eyes), non-PDR with ME group (NPDR/ME+ group, 5 eyes), PDR without ME group (PDR/ME-group, 25 eyes), PDR with ME group (PDR/ME+ group, 5 eyes) according to the Early Treatment Diabetic Retinopathy Study. The ones having a history of pan-retinal photocoagulation (PRP) were classified as PRP-DR. Age-matched normal subjects were enrolled as the control group. Sub-foveal choroidal thickness (SFCT) was measured by SD-OCT with enhanced depth imaging (EDI). ResultsMean SFCT was (310.2±54.8), (251.1±81.4), (262.5±83.2), (286.2±76.8) and (327.4±83.1) μm respectively in control, NDR, NPDR/ME-, PDR/ME-and PRP-DR groups. Mean SFCT decreased significantly in NDR and NPDR/ME-group (t=2.754, 2.140; P < 0.05). Mean SFCT in PDR/ME-group was thicker than that in NDR (t=-2.114, P < 0.05). Mean SFCT in PRP-DR group was thicker than that in PDR/ME-group (U=271.500, P < 0.05). ConclusionSFCT decreased during the early course of diabetics and increased significantly as the severity worsened from NDR to PDR, and increased in the early duration after PRP treatment.
Objective To describe the spectral-domain optical coherence tomography (SD-OCT) features of retinal tuft. MethodsA retrospective clinical study. From May 2019 to April 2020, 22 patients (22 eyes) diagnosed as retinal tuft by clinical fundus examination in Eye Hospital of Wenzhou Medical University at Hangzhou were included in the study. There were 9 eyes in 9 males and 13 eyes in 13 females. All patients underwent ultra-widefield laser scanning fundus photography and SD-OCT examination. SD-OCT was performed with a 55° wide-angle lens to observe the morphology, color, size and location of the lesions. ResultsTwenty-six retinal tuft lesions were found in 22 eyes, all of which were solitary, gray, thylakoid and protrusion. SD-OCT images showed that all the lesions of retinal tuft showed a local protuberant appearance with moderate and hyperreflectivity, which was higher than the surrounding retina plane. In 22 lesions (84.62%, 22/26), there were one or more irregular hyporeflective cavities between the retinal neuroepithelial layers, and the other 4 lesions (15.38%,4/26) contained no hyporeflective cavities. In addition, 23 cases (88.46%, 23/26) with hyperreflective condensed cortical vitreous attached to the retina at the top of lesions, 8 cases (30.77%, 8/26) with retinal tear, and 6 cases (23.08%, 6/26) with shallow retinal detachment. ConclusionsIn SD-OCT, the retinal tufts show moderate and strong local protrusion, which are higher than the surrounding retinal plane. In most of the lesions, there are multiple or single irregular weak reflex cavities, and there are hyperreflective condensed cortical vitreous attached to the retina at the top of lesions. Local retinal tears or shallow retinal detachment are present in some lesions.
ObjectiveTo comparatively observe features of choroidal osteoma by multimodal fundus imaging methods. MethodsThis is a retrospective case study. Sixteen patients (16 eyes) with choroidal osteoma were enrolled in this study. The patients included 6 males (6 eyes) and 10 females (10 eyes), with an average age of (30.5±2.4) years. All patients received examination of best-corrected visual acuity, slit lamp microscope, indirect ophthalmoscopy, fundus color photography, fundus autofluorescence (AF), fundus fluorescein angiography (FFA) and spectral domain optical coherence tomography (SD-OCT). The tumors were classified as fresh lesion (clear boundary and rosy tumor with smooth surface) and obsolete lesions (pale and flat tumor with obvious patches). The tumor features of color fundus photography, AF, FFA and SD-OCT were comparatively observed. ResultsThere were 5 fresh lesions and 11 obsolete lesions. Color fundus photography showed the tumor color was orange-red or yellow-white with clear boundary and retinal blood vessels on the surface of the tumor. The color of fresh lesion was rosy. In general, choroidal osteoma shown weak AF, however AF of fresh tumor was slightly stronger than the obsolete tumor, and retinal detachment region showed relatively stronger AF. FFA of fresh tumor indicated uniform intense fluorescence with clear boundary at late stage, much stronger than obsolete tumor. SD-OCT showed mesh-like reflected signal in the choroidal layer, but different from the surrounding choroidal vascular structures. ConclusionsThe tumor color is orange-red or yellow-white in color funds photography, which shown weak AF. FFA showed mottled hyperfluorescence in the early stage and tissue staining at the late stage. SD-OCT showed mesh-like reflected signal in the choroidal layer.
Macular edema is an important cause of visual impairment in many eye diseases such as diabetic retinopathy, retinal vein occlusion and uveitis. Optical coherence tomography (OCT) provides high-resolution image of retinal microstructures in a non-contact and rapid manner, which greatly improves the ability of diagnosis and follow-up to macular edema patients. OCT has been widely used in the clinical detection of patients with macular edema. No matter what the cause of macular edema is, it can be observed in OCT images that there are spot-like deposits with strong reflection signals in the retina, which are mostly distributed discretely or partially convergent, and are called hyperreflective foci. At present, the nature or source of hyperreflective foci is not clear, however, may involve the destruction of the blood retina barrier, retinal inflammatory reaction, neurocellular degeneration, and so on. These mechanisms are also the key physiological mechanisms in the development of macular edema. The clinical research on hyperreflective foci provides a new direction for understanding the pathogenesis of macular edema and predicting the prognosis of macular edema. The distribution and quantity characteristics of hyperreflective foci may be an important biological marker to predict the prognosis of macular edema.nosis of macular edema. foci provides a new direction for understanding the pathogenesis of macular edema and predicting the prognosis of macular edema. The distribution and quantity characteristics of HRF may be an important biological marker to predict the prognosis of macular edema.
Optical coherence tomography angiography (OCTA) base on OCT with an algorithm that can image a high-resolution picture of retinal circulation. OCTA has allowed quantifying the characteristic lesions of diabetic retinopathy (DR) in early stage, such as fovea avascular zone, retinal vascular density and the counts of retinal microaneurysm. In addition, OCTA can objectively evaluate the progression and prognosis of DR in late stage through imaging involved retinal neovascularization. Understanding OCT angiography features of DR lesions with different course of the disease may provide reference value for the diagnosis and treatment of DR.
Objective To observe the imaging features of ultra-wide field short wave fundus autofluorescence (SW-FAF) in eyes with multiple evanescent white dot syndrome (MEWDS), and analysis the correspondence to conventional images. Methods It was a retrospective case series study. Thirteen patients (14 eyes) diagnosed with MEWDS were enrolled. There were 12 females and 1 male, aged from 22 to 57 years, mean age was 34.5 years. All the eyes underwent fundus color photography, optical coherence tomography (OCT) and ultra-wide field autofluorescence (FAF). Simultaneous fundus fluorescein angiography (FFA) and indocyanine green angiography (ICGA) were performed in 6 eyes. The characteristic changes of SW-FAF in studied eyes were observed and compared with the images of FFA and ICGA. All the eyes were followed up every 1 to 2 weeks, with an average of 16.7 weeks. The characteristic images of SW-FAF and corresponding OCT were studied during follow up. Results MEWDS presented with numerous multiple hyper-autofluorescent spots, sized from 50-500 μm, with a vague boundary in ultra-wide field SW-FAF. These spots located mainly at the peripapillary area and the posterior pole with a confluent pattern. The lesions extended to the mid-peripheral retina as well and became more scattered. The distribution of the hyper-autofluorescent lesions in SW-FAF corresponded roughly to that of the greyish-white spots seen in color photograph and the hyper-fluorescent spots detected by FFA. It was consistent with the distribution of hypo-fluorescent spots in late-phase ICGA as well. But the number of the spot showed in FAF is much more than that in FFA, and slightly less than that in ICGA. The OCT scans through the hyper-autofluorescent lesions in SW-FAF showed impairment of outer retina. After the recovery, the hyper-autofluorescent spots disappeared with the outer retina structure repaired completely. Conclusions MEWDS presented with numerous multiple hyper-autofluorescent spots which located mainly at the peripapillary area in ultra-wide field SW-FAF. The distribution of the hyper-autofluorescent lesions in SW-FAF corresponded roughly to color photograph, FFA and ICGA in late-phase. The OCT scans through the hyper-autofluorescent lesions in SW-FAF showed impairment of outer retina.
Objective To observe the changes of retinal nerve fiber layer (RNFL) thickness in patients with Alzheimer's disease (AD). Methods Twenty eyes of 40 patients with mild and (or) moderate AD confirmed by clinical examination (AD group) were included in the study. There were 11 males and 9 females with an average age of (72.75±8.25) years. Age and gender-matched normal 20 objectives were in the normal control group. Among them, there were 11 males and 9 females with a mean age of (71.05±7.08) years. There was no significant difference in gender composition, age and intraocular pressure between the two groups (P>0.05). There were significant differences in visual acuity, cup disc ratio and mini-mental state examination score (P<0.05). All eyes underwent high-resolution optical coherence tomography (OCT) examination. With a diameter of 3.4 mm and a center on the center of the optic disc, circular fast scans on optic disc were performed to obtain an average disc RNFL thickness, signal threshold >6. Computer image analysis system was used to measure the RNFL thickness from superior, inferior, temporal and nasal quadrants, and the average RNFL thickness. The changes of RNFL thickness between the two groups and between different eyes of the same group were compared. Results Compared with the normal control group, the average (t=5.591), superior (t=8.169, 8.053) and inferior (t=12.596, 11.377) thickness of RNFL in both eyes in AD group were thinner, the differences were significant (P<0.05); the temporal (t=1.966, 0.838)and nasal (t=2.071, 0.916) thickness of RNFL in both eyes of AD group were thinner, but the difference was not statistically significant (P>0.05). There was no significant difference of the mean and different quadrant RNFL thickness between different eyes in AD group and normal control group (AD group: t=0.097, 0.821, 0.059, 0.020, 0.116; normal control group: t=0.791, 1.938, 1.806, 2.058, 1.005; P>0.05). Conclusion The RNFL thickness around the optic disc in AD patients is thinner; This occurs first in superior and inferior quadrants of the optic disc.
ObjectiveTo observe and analyze the changes of macular retinal thickness and related factors in children with occult myopia. MethodsA prospective longitudinal control study. From February 2021 to February 2022, 120 eyes of 60 children who first visited Department of Ophthalmology of The Affiliated Hospital of Chengde Medical College without any corresponding myopia correction treatment were included in the study. There were 32 males (64 eyes) and 28 females (56 eyes), with the age of 4-6 years. Visual acuity, medical optometry, corneal topography, spectral-domain optical coherence tomography (OCT) and axial length (AL) were measured at the first visit and 3, 6, 9 and 12 months. The children were divided into occult myopia group with 60 eyes of 30 cases and control group with 60 eyes of 30 cases according to visual acuity, equivalent spherical refraction (SE), AL and corneal curvature (CC). The macular fovea retinal thickness was measured by spectral-domain OCT enhanced deep imaging technique. According to the treatment and study of diabetic retinopathy, the retina within the 6 mm of the macular center was divided into three concentric circles with the macular fovea as the center, the central fovea of 1 mm, the inner ring of 1-3 mm and the outer ring of 3-6 mm. In the inner ring and outer ring, the retina was divided into 4 areas, upper and lower, left and right, with a total of 9 regions. The four regions of the inner ring and the outer ring were superior, inferior, nasal and temporal, respectively. The differences of AL, CC, SE, macular retinal thickness and the changes of related factors with time were compared between the occult myopia group and the control group. SE, AL, CC and retinal thickness in different macular regions of the two groups were compared by repeated measurement analysis of variance. In pairwise comparison, the minimum significant difference t test was used in different measurement time points, and the independent sample t test was used between groups at the same measurement time points. ResultsAt first diagnosis and after diagnosis, there were significant differences in SE (F=783.710), AL (F=742.192), macular fovea (F=330.292), inferior and temporal (F=158.250, 108.292) side of the outer ring retinal thickness in occult myopia group (P<0.01). In the control group, there were significant differences in the retinal thickness of SE (F=1 793.976), AL (F=457.362), macular fovea (F=31.029), inferior and temporal (F=7.405, 77.245) side of the outer ring retinal thickness (P<0.01). In both groups, with the prolongation of the time after the first diagnosis, the SE gradually increased, the AL gradually lengthened, and the thickness of the macular fovea, inferior and temporal side of the outer ring retinal thickness gradually thinned. Independent sample t test was performed on the data with differences between groups at the same time, and the results showed that at 3, 6, 9 and 12 months after first diagnosis, there were significant differences in SE, AL and CC between the occult myopia group and the control group (t=-4.801,-11.532, 16.276,-17.145), AL (t=24.203, 26.353, 27.057, 25.552); CC (t=-23.362,-25.382,-25.890,-24.350; P<0.01). There were significant differences in macular fovea, inferior and temporal side of the outer ring retinal thickness at 6, 9 and 12 months, macular fovea (t=-2.596,-2.542, -2.941; P<0.05), outer ring temporal (t =-2.285, -2.610, -2.506; P<0.05). ConclusionThe SE and AL of the occult myopia group and the control group increase with time, and the former increase more rapidly than the latter; the macular fovea, inferior and temporal side of the outer ring retinal become thinner, and the former become thinner than the latter.
Diabetic macular edema is the leading cause of central vision loss and even blindness in diabetic retinopathy. Compared to FFA, OCT can obtain the high-resolution 3D image quickly, easily to reflect the details of the tissue and realize the quantitative measurement. As a novel technology, OCT angiography (OCTA) can display microvascular structure from different layers of retina and choroid, having its advantage of quantifying the vessel density and the lesion area. By detecting fundus morphology, quantifying and quantitating the retinal vessels and vessel density, the combination of OCT and OCTA could play a guiding role in diagnosis, classification, treatment and prognosis of diabetic macular edema.