Objective To study the effects of partial axillary lymph node dissection (PALD) on prognosis and upper limb function in patients with breast cancer. Methods Ninety-eight breast cancer patients with stage Ⅰ and Ⅱ were randomly divided into two groups and different surgical procedures following modified mastectomy were performed: partial axillary lymph node (level Ⅰ and Ⅱ) dissection (PALD) group (n=48) and total axillary lymph node (levelⅠ, Ⅱ and Ⅲ) dissection (TALD) group (n=50). The longterm positive relapse rate and upper limb function between 2 groups were compared. Results During the follow-up of 5 to 10 years (average 4.5 years), there were 2 cases (4.2%) of local recurrence on chest wall and one case (2.1%) of recurrence in axillary lymph node and one case (2.1%) of recurrence in supraclavicular lymph node in PALD group, and 2 cases (4.0%) of local recurrence on chest wall and no axillary lymph node recurrence and one case (2.0%) of recurrence in supraclavicular lymph node happened in TALD group. There was no statistical difference between PALD group and TALD group (Pgt;0.05). The incidence of upper limb edema and dysfunction was 4.2% (2/48) in PALD group and 16.0%(8/50) in TALD group (P<0.01). There was no significant statistical difference of 5year and 10year survival rate between PALD group and TALD group (89.6% vs. 88.0%, 79.2% vs. 78.0%,Pgt;0.05). Conclusion PALD may reduce upper limb dysfunction after operation in patients with stage Ⅰ and Ⅱ breast cancer, and does not increase prognostic risk.
Objective To evaluate the long-term function of the traumaticallydamaged joint after its repair with transplantation of a fresh or a frozen allogenic joint. Methods From March 1977 to September 1993, 13 patients (9 males, 4females; age, 17-55 years) with traumatically-damaged joints underwent transplantation of the fresh or the frozen allogenic joints. Five patients had 5 damagedmetacarpophalangeal joints, 6 patients had 9 damaged interphalangeal joints, and 2 patients had 2 damaged elbow joints. So, the traumatic damage involved 13 patients and 16 joints. All the metacarpophalangeal joints and the interphalangeal joints were injured by machines and the 2 elbow joints were injured by road accidents. The patients were randomly divided into 2 groups: Group A (n=7) andGroup B (n=6). The 7patients with 8 joints in Group A underwent transplantation of fresh allogenic joints; the 6 patients with 8 joints in Group B underwent transplantation of frozen allogenic joints. The allogenic joint transplants were performed in the period from immediately after the injuries to 6 months after the injuries. The motion ranges of the transplanted joints and the X-ray films were examined after operation, and the immunological examination was performed at 8 weeksafter operation. Results The time for synostosis was 5-8 months in Group A, but4-6 months in Group B. In Group A, at 2 years after operation the metacarpophalangeal flexion was 30-40° and the interphalangeal flexion was 20-30°; however,at 6 or 7 years after operation the interphalangeal flexion was only 10-20°. The patients undergoing the transplantation with fresh elbow joints had the elbowflexion of 60° and the elbow extension of 0°, and had the forearm pronation of 30°and the forearm supination of 30°. But in Group B, at 2 years after operation the metacarpophalangeal flexion was 6070° and the interphalangeal flexionwas 40-50°; at 6 or 7 years after operation the interphalangeal flexion was still 40-50°. However, the patients undergoing the transplantation with frozen elbow joints had the elbow flexion of 90° and the elbow extension of 0°, and hadthe forearm pronation of 45° and a forearm supination of 45°. The joint motion ranges, the Xray findings, and the immunological results in the patients undergoing the transplantation of the frozen allogenic joints were significantly better than those in the patients undergoing the transplantation of fresh allogenicjoints. There was a significant difference in the immunological examination between Group A and Group B (IL2, 21.64±3.99;CD4/CD8,3.88±0.82 vs.IL-2,16.63±3.11;CD4/CD8, 2.53±0.23, P<0.01). Conclusion Repairing the traumatically-damaged joints with frozen allogenic joints is a better method of regaining the contour, movement, and complex motion of the hands.
ObjectiveTo explore the effectiveness of the dissociative saphenous arteria flap in repairing upper limbs soft tissue defect. MethodsBetween June 2012 and April 2014, 10 cases of skin and soft tissue defects at the upper limbs were treated, including 6 males and 4 females with an average age of 42 years (range, 23-58 years). The causes of injury was the machine injury in 9 cases, the interval of injury and operation was 2 hours to 32 days (mean, 5.5 days); the locations were the dorsal radial side in 3 cases and the dorsal forearm in 6 cases. Skin defect with tendon exposure was observed in 1 case after contracture of the first web space resection. The defect size varied from 5 cm×3 cm to 16 cm×9 cm. The size of the flaps ranged from 6.0 cm×3.6 cm to 19.2 cm×10.8 cm. In 7 cases, the saphenous nerve was anastomosed with the nerve of the donor (cutaneous nerve, radial nerve, or ulnar nerve); in 5 cases, tendon defect was repaired by sartorius muscle tendon bridge. The donor sites were repaired by free skin graft or suture. ResultsThe other flaps survived and obtained healing by first intention except 1 flap which had partial necrosis with healing by second intention. The skin graft at donor site survived. All patients were followed up 5-17 months (mean, 12 months). The flaps had good color and texture without contracture. At last follow-up, the sensation recovered to S1-S3+; in 7 cases undergoing nerve anastomosis, the sensation reached S3-S3+, and it was better than that not undergoing nerve anastomosis (S1-S2); in 5 cases receiving sartorius muscle tendon bridging, the hand function recovered satisfactorily except 1 case of total active movement (TAM) value >75% of contralateral TAM at last follow-up. According to the Chinese Medical Society of Hand Surgery function evaluation standards, the results were excellent in 8 cases and good in 2 cases. ConclusionThe dissociative saphenous arteria flap is an effective way to repair skin defects of the upper limbs because of reliable blood supply and simple surgical procedure.
ObjectiveTo explore the clinical effect of the end-traction upper limb rehabilitation training system on patients with upper limb motor dysfunction after stroke.MethodsPatients with upper limb motor dysfunction who were admitted to the Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University from September to November 2019 were selected. According to the software, the patients were randomly divided into the experimental group and the control group. Both groups received conventional medical treatment, basic rehabilitation, and activities of daily living training. In addition, the control group received traditional occupational therapy, while the experimental group received end-traction upper limb rehabilitation training. The training time of both groups was 30 min/ (times ·d) and 5 days per week. Rehabilitation evaluation and recording were performed before and after the four-week treatment in both groups using the simplified upper extremity Fugl-Meyer assessment (FMA) and the modified Barthel index (MBI).ResultsA total of 36 patients were enrolled, with 18 in each group. All patients completed the experiment, and no special discomfort was observed. Before the treatment, there was no statistically significant difference in FMA and MBI between the experimental group [(13.22±3.13) and (49.66±6.81) points] and the control group [(14.78±1.70) and (51.67±6.65) points] (t=1.858, 0.896; P=0.072, 0.377). After four-week treatment, FMA and MBI in both groups improved significantly (P<0.05); the difference between the experimental group [(27.56±15.68) and (73.55±8.72) points] and the control group [(17.67±6.73) and (65.33±9.20) points] was statistically significant (t=2.459, 2.751; P=0.019, 0.009).ConclusionsThe end-traction upper limb rehabilitation training system can significantly improve the upper limb motor function of patients with upper limb motor dysfunction after stroke and improve the patients’ daily life ability. It is worthy of clinical promotion and application.
At present, upper limb motor rehabilitation relies on specific rehabilitation aids, ignoring the initiative of upper limb motor of patients in the middle and late stages of rehabilitation. This paper proposes a fuzzy evaluation method for active participation based on trajectory error and surface electromyography (sEMG) for patients who gradually have the ability to generate active force. First, the level of motor participation was evaluated using trajectory error signals represented by computer vision. Then, the level of physiological participation was quantified based on muscle activation (MA) characterized by sEMG. Finally, the motor performance and physiological response parameters were input into the fuzzy inference system (FIS). This system was then used to construct the fuzzy decision tree (FDT), which ultimately outputs the active participation level. A controlled experiment of upper limb flexion and extension exercise in 16 healthy subjects demonstrated that the method presented in this paper was effective in quantifying difference in the active participation level of the upper limb in different force-generating states. The calculation results of this method and the active participation assessment method based on sEMG during the task cycle showed that the active participation evaluation values of both methods peaked in the initial cycle: (82.34 ± 9.3) % for this paper’s method and (78.44 ± 7.31) % for the sEMG method. In the subsequent cycles, the values of both showed a dynamic change trend of rising first and then falling. Trend consistency verifies the effectiveness of the active participation assessment strategy in this paper, providing a new idea for quantifying the participation level of patients in middle and late stages of upper limb rehabilitation without special equipment mediation.
To solve the safety problems caused by the restriction of interaction space and the singular configuration of rehabilitation robot in terminal traction upper limb rehabilitation training, a trajectory planning and tracking control scheme for rehabilitation training is proposed. The human-robot safe interaction space was obtained based on kinematics modeling and rehabilitation theory, and the training trajectory was planned based on the occupational therapy in rehabilitation medicine. The singular configuration of the rehabilitation robot in the interaction space was avoided by exponential adaptive damped least square method. Then, a nonlinear controller for the upper limb rehabilitation robot was designed based on the backstepping control method. Radial basis function neural network was used to approximate the robot model information online to achieve model-free control. The stability of the controller was proved by Lyapunov stability theory. Experimental results demonstrate the effectiveness and superiority of the proposed singular avoidance control scheme.
ObjectivesTo investigate the influence of the abduction angle of the upper extremities on the image quality of non-enhanced CT scan and clinical value of the patients who cannot lift with double upper limbs by vehicle accident.Methods60 patients with double upper limbs that could not lift by vehicle accidents were required to receive liver non-enhanced CT scan, the patients were divided into 3 groups according to the abduction angle (group A, B, C), 20 cases in each group, another 20 cases with standard pose as the control group (group D). The CT value and standard deviation of the liver region of interest, the erector and the background air were measured, and the contrast to noise ratio of liver images, image noise value were calculated, together with the assessment of image quality and statistic analysis.ResultsThe liver non-enhanced CT scan were completed successfully. The image quality of group D was significantly better than A, B, C (Z=–10.753, P<0.05;Z=–11.645, P<0.05;Z=–12.281, P<0.05), respectively. Group C was better than A and B (Z=–8.502, P<0.05;Z=–4.068, P<0.05), respectively. Group B was better than A (Z=–5.885, P<0.05). The CNR of the four groups of images increased gradually, group A (0.09±0.77), group B (1.56±0.83), group C (2.51±0.87), group D (2.59±0.97), respectively. There were significant differences between four groups (F=36.323, P<0.05). The image noise decreased systematically, group A (14.84±2.94), group B (13.04±1.59), group C (11.60±1.72), group D (10.44±1.13), respectively. There were significant differences between four groups (H=426.755, P<0.05).ConclusionOn the premise of safety inspection, with the enlargement of angle of the upper limbs of patients who cannot lift with double upper limbs by vehicle accidents, the image noise decreased and image quality is improved with the increase of signal noise ratio.
【Abstract】 Objective To research the method and effectiveness of V-Y advancement of skin flap pedicled with the upper limb lateral branch in the treatment of small skin defect in the dorsal elbow. Methods Between March 2008 and August 2010, 6 cases of skin defect in the dorsal elbow were treated by V-Y advancement of skin flap pedicled with the upper limb lateral branch, including 4 males and 2 females with a mean age of 53 years (range, 16-76 years). Defects were caused by crushing in 3 cases, by punching in 2 cases, and the disease duration was 4 hours 30 minutes to 7 days (mean, 29.5 hours); and by chronic infection in 1 case, and the disease duration was 12 months. The defect size ranged from 4.0 cm × 2.5 cm to 9.5 cm × 3.5 cm, all complicating by bone or tendon exposure. The flap size ranged from 6.0 cm × 4.0 cm to 12.5 cm × 9.5 cm; the donor sites were sutured directly. Results All flaps survived completely, wounds and incisions at donor sites healed by first intention. Six cases were followed up 6-12 months after operation. The flaps had good texture and color. Two-point discrimination of the skin flap was 12-16 mm. The function of limb was normal, and elbow flexion and extension activity averaged 105° (range, 95-125°). Conclusion It is ideal to treat small skin defect in the dorsal elbow with V-Y advancement of skin flap pedicled with the upper limb lateral branch because of easier operation and less injury at donor site.
ObjectiveTo observe the effects of upper limb rehabilitation robot-assisted training combined with mirror therapy on unilateral spatial neglect (USN) in stroke patients.MethodsA total of 40 patients with USN admitted to the Department of Rehabilitation Medicine of the Second Affiliated Hospital of Nantong University from January 2017 to December 2018 were selected and randomly divided into the trial group and the control group, with 20 cases in each group. The trial group used upper limb rehabilitation robot-assisted training combined with mirror therapy and USN comprehensive rehabilitation treatment. The control group patients only received USN comprehensive rehabilitation treatment. All patients continued treatment for 4 weeks. Before treatment and after 4 weeks of treatment, the modified Barthel index (MBI) was used to assess the activities of daily living, the Fugl-Meyer assessment (FMA) was used to assess motor function, and the Catherine-Bergego scale was used to assess the degree of USN.ResultsThere was no statistically significant difference in general information between the two groups of patients (P>0.05). There was no significant difference in MBI, FMA or USN degree scores between the two groups before treatment (P>0.05). After 4 weeks of treatment, the MBI, FMA and USN degree scores of the two groups were improved compared with those before treatment (P<0.05). The improvements in MBI, FMA and USN degree scores of the trial group were 14.75±1.97, 17.05±3.93 and 5.25±2.29, respectively, and those of the control group were 9.75±4.44, 8.30±2.06 and 3.10±0.72, respectively, and the differences were statistically significant (P<0.05).ConclusionsUpper limb rehabilitation robot-assisted training combined with mirror therapy can effectively improve the spatial neglect of USN patients, and improve the ability of daily living and motor functions.
OBJECTIVE: To study the clinical result of treating firearm-wound with the vessel pedicel tissue flap. METHODS: From May 1992 to October 2000, 21 cases of firearm-wound of upper limbs underwent transplantation with the vessel pedicel tissue flap. Of them, the locations of the wound were upper arm in 11 cases, forearm in 7 cases, hand in 3 cases. The size of wound was 1.0 cm x 0.5 cm to 8.0 cm x 6.5 cm; the wound course was 3 minutes to 8 hours with an average of 3 hours and 30 minutes. The patients were followed up 3 months to 2 years. RESULTS: In 21 cases, the results were excellent in 19 cases and poor in 2 cases. The good rate was 90.5%. CONCLUSION: Treatment of firearm-wound with vessel pedicel tissue flap has the good effect.