OBJECTIVE: To prepare the compound biodegradable matrices, polyglycolic acid (PGA), polylactic acid (PLA) mesh and poly-beta-hydroxybutyrate(PHB) which precoated with collagen, and to observe the growth and differentiation of bovine vascular endothelial cells on these scaffolds. METHODS: By enzymatic digestion methods, bovine vascular endothelial cell (VEC) were isolated from calf thoracic aorta, then cultured and purified. PGA, PLA, PHB meshes were dipped into cross-linked type I collagen solution, dried under vacuum frozen condition. VEC were seeded into these scaffolds. The growth of VEC on scaffolds was analyzed by MTT method. RESULTS: The collagen, PGA/collagen, PLA/collagen scaffolds were elasticity and tenacity. VEC grew better on collagen, PGA/collagen, and PLA/collagen membranes than on the PHB/collagen one. CONCLUSION: The PGA/collagen scaffold has elasticity, plasticity and tenacity. VEC grow best on it. It is an ideal scaffold for tissue engineered vessel reconstruction for it integrating both advantages of biomaterials and degradable materials.
Objective To study the biological behavior of osteoblast and vascular endothelial cell culture. Methods The osteoblasts and vascular endothelial cells were obtained from calvarial bone and renal cortox of 2-week rabbits respectively. The experiment were divided into group A (osteoblasts), group B (vascular endothelial cells) and group C(co-cultured osteoblasts and vascular endothelial cells). The cells were identified with cytoimmunochemical staining. The cellular biological behavior and compatibilitywere observed under inverted phase contrast microscope and with histological staining. The cells viability and alkaline phosphatase(ALP) activity were measured. Results The cytoimmunochemical staining showed that the cultured cells were osteoblasts and vascular endothelial cells .The cellular compatibility of osteoblasts and vascular endothelial cells was good. The ALP activity was higher in group C than in group A and group B(P<0.01), and it was higher in group A than in group B(P<0.05). In group C, the cellproliferation were increased slowly early, but fast later. Conclusion Thecellular compatibility of osteoblasts and vascular endothelial cells were good. The vascular endothelial cells can significantly increased the osteoblast viability and ALP activity,and the combined cultured cells have greater proliferation ability.
Objective To investigate the role of vascular endothelial growth factor-C (VEGF-C) and its receptors in the formation of lymphatic vessels and lymphatic metastasis in gastric cancer. Methods By the domestic and overseas literatures review, the expressions of VEGF-C and its receptors in gastric cancer, their role in tumor lymphatic metastasis and prospect in treatment of gastric cancer were summarized.Results There was a significant correlation between VEGF-C and its receptors and the formation of lymphatic vessels and lymphatic metastasis in gastric cancer. VEGF-C high expression might be an early event in lymphatic metastasis and could be considered as an independent predictive factor of lymphaticmicrometastasis. By inhibition of gastric cancer cell from secrete VEGF-C or blockage of the interaction of VEGF-C with VEGFR3, it was possible to inhibit tumor angiogenesis and the invasion and distant spread of cancer cells, thereby decreased mortality and improve survival. ConclusionVEGF-C and its receptors may promote the formation of lymphatic vessels and lymphatic metastasis in gastric cancer. It may be an effective way to gastric cancer for the treatments against VEGF-C and its receptors.
Abstract: Objective To study the expression of E-selectin on vascular endothelial cells of nude mice liver induced by esophageal carcinoma cells, in order to find out the function of E-selectin in the metastasis of esophageal carcinoma into the liver. Methods Twelve Balb/c nude mice aged from 6 to 8 weeks with their weight ranged between 20 and 25 grams were selected in our research. The mice were equally distributed into the experimental group and the control group(n=6). EC9706 cell solution (5×10.6/0.02 ml) were injected beneath the splenic capsule of the mice in the experimental group. One hour later, spleen was removed. For the mice in the control group, after laparotomy, phosphate buffer without EC 9706 was injected beneath the splenic capsule and spleen was also removed one hour after the injection. Eight hour later, we resected the liver of the nude mice, and expression of E-selectin on vascular endothelial cells of the liver was detected with reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). Results In the experimental group, 8 hours after injection of EC9706 cells (5×10.6), the results of RT-PCR showed expression of E-selectin mRNA in the liver, and IHC showed a positive protein expression of E-selectin in the cytosol and membrane of hepatic sinus vessels.However, no E-selectin mRNA expression was found in the control group and IHC showed a negative protein expression of E-selectin. Conclusion Human esophageal carcinoma cell line EC9706 can induce balb/c mice liver vascular endothelial cell E-selectin expression, which shows that EC9706 may stay in the liver and form etastatic focus.
Objective To observe the influences of estradiol (E2), basic fibroblast growth factor (bFGF), and tamoxifen (TAM) on the proliferation of hemangioma vascular endothelial cell (HVEC). Methods Two strawberry hemangioma from 2 infants (case 1 and case 2) were prepared for HVEC culture. The HVEC on passage 3 were cultured in estrogenfree improved minimum essential medium (IMEM) and subjected to various treatments with 100 pg/ml 17-β-E2, 10 ng/ml bFGF, and 1×10-6 mol/L 4-OH-tamoxifen(4-OH-TAM). The experiment was divided into 5 groups: group 1(IMEM, control group), group 2(17-β-E2), group 3(bFGF), group 4(17-β-E2/bGFG) and group 5(17-β-E2/bGFG/4-OH-TAM). The cell count(CC) and DNA proliferation index (PI) were determined. Results Two cases of HVEC were successfully cultured in vitro. The HVEC showed cobblestoneslike under microscopy and factor Ⅷrelated antigen(also named as von Willebrand factor,vWF) was positive by immunochemical staining. At 9 days in case 1: CC and PI remained unchanged in the control group; CC and PI were slightly increased in group 2, being 1.4 and 1.6 times as much as those in the control group respectively (P<0.05); CC and PI significantly increased in group 3, being2.6 and 2.3 times as much as those in the control group respectively (P<0.01); CC and PI increased remarkably in group 4, being 3.7 and 2.9 times as much as those in thecontrol group respectively (P<0.01); CC and PI were down to the levels of controls in group 5(P>0.05). The results in case 2 were similar to those in case 1. Conclusion In vitro, the promoting effect of bFGF on HVEC proliferation is much ber than that of estrogen. Estrogen and bFGF enhance this proliferation in a synergistic manner, which can be inhibited by tamoxifen.
Objective To study the differenation of adult marrow mesenchymal stem cells(MSCs) into vascular endothelial cells in vitro and to explore inducing conditions. Methods MSCs were isolated from adult marrow mononuclear cells by attaching growth. MSCs were divided into 4 groups to induce: the cells seeded at a density of 5×103/cm2 in 2% and 15% FCS LDMEM respectively (group1 and group 2), at a density of 5×104/cm2 in 2% and 15% FCS LDMEM respectively (group 3 and group 4); vascular endothelial growth factor(VEGF) supplemented with Bovine pituitary extract was used to induce the cell differentiation. The differentiated cells were identified by measuring surfacemarks (CD34, VEGFR2, CD31 and vWF ) on the 14th day and 21st day and performed angiogenesis in vitroon the 21st day.The cell proliferation index(PI)of different inducing conditions were measured. Results After induced in VEGF supplemented with Bovine pituitary extract, the cells of group 3 expressed the surface marks CD34, VEGFR-2, CD31 and vWF on the 14th day, the positive rates were 8.5%, 12.0%, 40.0% and 30.0% respectively, and on the 21st day the positive ratesof CD34 and VEGFR2 increased to 15.5% and 20.0%, while the other groups did not express these marks; the induced cells of group 3 showed low proliferating state(PI was 10.4%) and formed capillary-like structure in semisolid medium. Conclusion Adult MSCs can differentiate into vascular endothelial cellsafter induced by VEGF and Bovine pituitary extract at high cell densities and low proliferatingconditions,suggesting that adult MSCs will be ideal seed cells forthe therapeutic neovascularization and tissue engineering.
Objective To investigate the expression of transcription factors including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in vascular endothelial cells (ECs) in different flow fields, and provide experimental evidence for mechanical signal effects on gene regulation pattern of ECs. Methods Cultured human umbilical vein ECs were loaded into steady flow chambers of laminar flow or turbulent flow and observed at 6 time points (0.5 h, 1 h, 2 h, 3 h, 4 h and 5 h) based on different load time. Spacial and temporal characteristics of NF-κB and AP-1 expression in ECs in different flow chambers were detected at a protein level by laser confocal microscope. Results In laminar flow, NF-κB expression rose to peak at 1 hour (26.49±1.63, P<0.05)and then declined. In turbulent flow, NF-κB expression rose to peak at 3 hours (34.41±6.43, P<0.05). In laminar flow, c-Jun/AP-1 expression was transiently elevated, reached its peak at 0.5 hour (18.95±5.38,P<0.05)and then fell to its baseline level. In turbulent flow, c-Jun/AP-1 expression rose slowly but steady to peak(P<0.05) . Conclusion The effects of turbulent flow on NF-κB and AP-1 expression in ECs are different from those of laminar flow. Up-regulation and activation of NF-κB and AP-1 expression in ECs induced by turbulent flow may cause pathological changes in morphological structure and functional behavior of ECs.
Objective To establish a simple and efficient method to isolate and culture the umbilical vein vascular endothelial cells in canine. Methods Twelve umbilical cords [(13.0 ± 1.5) cm in length] were taken from 12 newborn pups of Beagles. And then the vascular endothelial cells were isolated from these umbilical cords digested by 1% collagenase type I for 5, 7, and 10 minutes respectively (4 umbilical cords in each group). After cultured, the vascular endothelial cells were identified by morphology, immunofluorescence, and flow cytometry. And the growth curvature of umbilical vein vascular endothelial cells was detected by MTT assay. Results Few vascular endothelial cells were collected at 5 and 10 minutes after digestion; many vascular endothelial cells were seen at 7 minutes, and became cobblestone with culture time, with a large nucleus; after passage, cell morphology had no obvious change. Fluorescence microscope results showed that positive von Willebrand factor (vWF) and CD31 cells were observed in most of cells. The flow cytometry test displayed that the positive cell rates of vWF and CD31 were 99.0% ± 0.7% and 98.0% ± 1.2%, respectively. The above results indicated that cultured cells were vascular endothelial cells. MTT assay showed that vascular endothelial cells proliferation increased significantly with culture time. Conclusion Enzyme digestion is a convenient method to isolate vascular endothelial cells from canine umbilical vein, and a large number of cells and high purity of cells can be obtained by the method.
In order to study the effect of vascular endothelial cell growth factor (VEGF) on the survival of skin flap 30 SD rats were used. A randomized flap measuring 7.5 cm x 3.0 cm was created on the back of each SD rat. The treatment group (n = 10) received VEGF 40 ng/flap by subcutaneous injection with microinjector during and 24 hours after operation. The control groups received heparin 16 U/flap (n = 10) or normal saline 800 microliters/flap (n = 10). After operation, on the 3rd and 11th day, the survival rate of the skin flaps and the dermovascular density of each flap were investigated by histological and histo-morphometrical examination. The results showed that there was no significant difference in the survival rate between the treatment group and the controls on the 3rd day after operation, while on the 11th day, there was a significant difference between them, and the survival rate was much higher in the treatment group. Besides, dermovascular density was much more increased in the treatment group than that in the controls, especially in the distal 1/3 of the flap (P lt; 0.02). The conclusion was that VEGF could .
Objective To observe the effects of Galectin-3 on proliferation of vascular endothelial cells derived from peripheral blood endothelial progenitor cells. Methods The cultured peripheral blood endothelial progenitor cells in vitro were isolated and purified from human peripheral blood, and the cells were differentiated into vascular endothelial cells. Then the cells were cultivated with the galectin-3 of different concentrations, and to observe the proliferation of endothelial cells derived from peripheral blood endothelial progenitor cells. Results The abilities of proliferation of endothelial cells derived from peripheral blood endothelial progenitor cells of 0.1, 1.0, 2.5, 5.0, and 10.0 μg/ml groups were higher than that of 0 μg/ml group, there were not statistic significance of the differences between the 0.1,1.0, 2.5, and 0 μg/ml groups (P>0.05). But the abilities of proliferation of 5.0 and 10.0 μg/ml groups were obviously higher than that of 0, 0.1, 1.0, and 2.5 μg/ml groups (P<0.05), and the abilities of proliferation of 10.0 μg/ml group was also higher than that of 5.0 μg/ml group (P<0.05). Conclusion Galectin-3 can promote the proliferation of endothelial cells derived from peripheral blood endothelial progenitor cell.