The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human. The movement musculoskeletal system of lower extremity was simplified to a physical model with 3 joints and 9 muscles. Then on the basis of this model, an optimum mathematical model was built up to solve the problem of redundant muscle forces. Particle swarm optimization (PSO) algorithm is used to calculate the single objective and multi-objective problem respectively. The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces. Finally, the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.
Optical coherence tomography (OCT) has become a key technique in the diagnosis of coronary artery stenosis, which can identify plaques and vulnerable plaques in the image. Therefore, this technique is of great significance for the diagnosis of coronary heart disease. However, there is still a lack of automatic, multi-region, high-precision segmentation algorithms for coronary OCT images in the current research field. Therefore, this paper proposes a multi-zone, fully automated segmentation algorithm for coronary OCT images based on neutrosophic theory, which achieves high-precision segmentation of fibrous plaques and lipid regions. In this paper, the method of transforming OCT images into T in the area of neutrosophics is redefined based on the membership function, and the segmentation accuracy of fiber plaques is improved. For the segmentation of lipid regions, the algorithm adds homomorphic filter enhancement images, and uses OCT to transform OCT images into I in the field of neutrosophics, and further uses morphological methods to achieve high-precision segmentation. In this paper, 40 OCT images from 9 patients with typical plaques were analyzed and compared with the results of manual segmentation by doctors. Experiments show that the proposed algorithm avoids the over-segmentation and under-segmentation problems of the traditional neutrosophic theory method, and accurately segment the patch area. Therefore, the work of this paper can effectively improve the accuracy of segmentation of plaque for doctors, and assist clinicians in the diagnosis and treatment of coronary heart disease.
Accurate segmentation of pulmonary nodules is an important basis for doctors to determine lung cancer. Aiming at the problem of incorrect segmentation of pulmonary nodules, especially the problem that it is difficult to separate adhesive pulmonary nodules connected with chest wall or blood vessels, an improved random walk method is proposed to segment difficult pulmonary nodules accurately in this paper. The innovation of this paper is to introduce geodesic distance to redefine the weights in random walk combining the coordinates of the nodes and seed points in the image with the space distance. The improved algorithm is used to achieve the accurate segmentation of pulmonary nodules. The computed tomography (CT) images of 17 patients with different types of pulmonary nodules were selected for segmentation experiments. The experimental results are compared with the traditional random walk method and those of several literatures. Experiments show that the proposed method has good accuracy in the segmentation of pulmonary nodule, and the accuracy can reach more than 88% with segmentation time is less than 4 seconds. The results could be used to assist doctors in the diagnosis of benign and malignant pulmonary nodules and improve clinical efficiency.
The present study was carried out with the surface electromyography signal of subjects during the time when subjects did the exercises of the 6 core stability trainings. We analyzed the different activity level of surface electromyography signal, and finally got various fatigue states of muscles in different exercises. Thirty subjects completed exercises of 6 core stability trainings, which were prone bridge, supine bridge, unilateral bridge (divided into two trainings,i.e. the left and right sides alternatively) and bird-dog (divided into two trainings,i.e. the left and right sides alternatively), respectively. Each exercise was held on for 1 minute and 2 minutes were given to relax between two exercises in this test. We measured both left and right sides of the body’s muscles, which included erector spina, external oblique, rectus abdominis, rectus femoris, biceps femoris, anterior tibial and gastrocnemius muscles. We adopted the frequency domain characteristic value of the surface electromyography signal,i.e. median frequency slope to analyze the muscle fatigue in this study. In the present paper, the results exhibit different fatigue degrees of the above muscles during the time when they did the core stability rehabilitation exercises. It could be concluded that supine bridge and unilateral bridge can cause more fatigue on erector spina muscle, prone bridge caused Gastrocnemius muscle much fatigue and there were statistical significant differences (P<0.05) between prone bridge and other five rehabilitation exercises in the degree of rectus abdominis muscle fatigue. There were no statistical significant differences (P>0.05) between all the left and right sides of the same-named muscles in the median frequency slope during all the exercises of the six core stability trainings,i.e. the degree which the various kinds of rehabilitation exercises effected the left and right side of the same-named muscle had no statistical significant difference (P>0.05). In this research, the conclusion presents quantized guidelines on the effects of core stability trainings on different muscles.
Gesture imitation is a common rehabilitation strategy in limb rehabilitation training. In traditional rehabilitation training, patients need to complete training actions under the guidance of rehabilitation physicians. However, due to the limited resources of the hospital, it cannot meet the training and guidance needs of all patients. In this paper, we proposed a following control method based on Kinect and NAO robot for the gesture imitation task in rehabilitation training. The method realized the joint angles mapping from Kinect coordination to NAO robot coordination through inverse kinematics algorithm. Aiming at the deflection angle estimation problem of the elbow joint, a virtual space plane was constructed and realized the accurate estimation of deflection angle. Finally, a comparative experiment for deflection angle of the elbow joint angle was conducted. The experimental results showed that the root mean square error of the angle estimation value of this method in right elbow transverse deflection and vertical deflection directions was 2.734° and 2.159°, respectively. It demonstrates that the method can follow the human movement in real time and stably using the NAO robot to show the rehabilitation training program for patients.
[Abstract]Automatic and accurate segmentation of lung parenchyma is essential for assisted diagnosis of lung cancer. In recent years, researchers in the field of deep learning have proposed a number of improved lung parenchyma segmentation methods based on U-Net. However, the existing segmentation methods ignore the complementary fusion of semantic information in the feature map between different layers and fail to distinguish the importance of different spaces and channels in the feature map. To solve this problem, this paper proposes the double scale parallel attention (DSPA) network (DSPA-Net) architecture, and introduces the DSPA module and the atrous spatial pyramid pooling (ASPP) module in the “encoder-decoder” structure. Among them, the DSPA module aggregates the semantic information of feature maps of different levels while obtaining accurate space and channel information of feature map with the help of cooperative attention (CA). The ASPP module uses multiple parallel convolution kernels with different void rates to obtain feature maps containing multi-scale information under different receptive fields. The two modules address multi-scale information processing in feature maps of different levels and in feature maps of the same level, respectively. We conducted experimental verification on the Kaggle competition dataset. The experimental results prove that the network architecture has obvious advantages compared with the current mainstream segmentation network. The values of dice similarity coefficient (DSC) and intersection on union (IoU) reached 0.972 ± 0.002 and 0.945 ± 0.004, respectively. This paper achieves automatic and accurate segmentation of lung parenchyma and provides a reference for the application of attentional mechanisms and multi-scale information in the field of lung parenchyma segmentation.
Muscle fatigue has widespread application in the field of rehabilitation medicine. The paper studies the muscle fatigue using surface electromyogram (sEMG) in the background of rehabilitation training system. The sEMG and ventilatory threshold of vastus lateralis, rectus femoris and erector spinae are collected synchronously and the electromyogram fatigue threshold (EMGFT) of different sEMG was analyzed by increasing load cycling experiments of 10 healthy subjects. This paper also analyzes the effect of isotonic and isometric contraction on EMGFT. Results showed that the appeared time of EMGFT was earlier than that of ventilatory threshold in the incremental load cycling. While the differences were subtle and EMGFT was verified to be effective. EMGFT has been proven effective for different muscle contraction by comparing the EMGFT of vastus lateralis and erector spinae. EMGFT could be used to keep muscle injuries from overtraining in the process of rehabilitation. Therefore, EMGFT has a great significance for femoral shaft fractures’s fatigue monitoring in rehabilitation training.
The segmentation of the intracoronary optical coherence tomography (OCT) images is the basis of the plaque recognition, and it is important to the following plaque feature analysis, vulnerable plaque recognition and further coronary disease aided diagnosis. This paper proposes an algorithm about multi region plaque segmentation based on kernel graph cuts model that realizes accurate segmentation of fibrous, calcium and lipid pool plaques in coronary OCT image, while boundary information has been well reserved. We segmented 20 coronary images with typical plaques in our experiment, and compared the plaque regions segmented by this algorithm to the plaque regions obtained by doctor's manual segmentation. The results showed that our algorithm is accurate to segment the plaque regions. This work has demonstrated that it can be used for reducing doctors' working time on segmenting plaque significantly, reduce subjectivity and differences between different doctors, assist clinician's diagnosis and treatment of coronary artery disease.
The functional coupling between motor cortex and effector muscles during autonomic movement can be quantified by calculating the coupling between electroencephalogram (EEG) signal and surface electromyography (sEMG) signal. The maximal information coefficient (MIC) algorithm has been proved to be effective in quantifying the coupling relationship between neural signals, but it also has the problem of time-consuming calculations in actual use. To solve this problem, an improved MIC algorithm was proposed based on the efficient clustering characteristics of K-means ++ algorithm to accurately detect the coupling strength between nonlinear time series. Simulation results showed that the improved MIC algorithm proposed in this paper can capture the coupling relationship between nonlinear time series quickly and accurately under different noise levels. The results of right dorsiflexion experiments in stroke patients showed that the improved method could accurately capture the coupling strength of EEG signal and sEMG signal in the specific frequency band. Compared with the healthy controls, the functional corticomuscular coupling (FCMC) in beta (14~30 Hz) and gamma band (31~45 Hz) were significantly weaker in stroke patients, and the beta-band MIC values were positively correlated with the Fugl-Meyers assessment (FMA) scale scores. The method proposed in this study is hopeful to be a new method for quantitative assessment of motor function for stroke patients.
In 2025, the American Cancer Society published "Cancer statistics, 2025", which projected cancer data for the upcoming year based on incidence data collected by central cancer registries (through 2021) and mortality data obtained from the National Center for Health Statistics (through 2022). Similarly, the National Cancer Center of China released "Cancer incidence and mortality in China, 2022" in December 2024, analyzing data from 22 cancer registries across the country. This study provides a comparative analysis of cancer incidence and mortality trends in China and the United States during the same period, with a focus on sex- and age-specific distributions and long-term changes in cancer patterns. Long-term trends indicate that lung and liver cancer mortality rates in China have declined, primarily due to tobacco control measures and hepatitis B vaccination programs. However, the burden of gastric and esophageal cancers remains substantial. In the United States, mortality rates for colorectal and lung cancers have continued to decline, largely attributed to widespread screening programs and advances in immunotherapy. As economic growth and social development, China’s cancer profile is gradually shifting towards patterns observed in countries with high human development index. However, the prevention and control of upper gastrointestinal cancers remains a critical public health challenge that requires further attention.