west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "WEI Guohui" 5 results
  • Research progress on endoscopic image diagnosis of gastric tumors based on deep learning

    Gastric tumors are neoplastic lesions that occur in the stomach, posing a great threat to human health. Gastric cancer represents the malignant form of gastric tumors, and early detection and treatment are crucial for patient recovery. Endoscopic examination is the primary method for diagnosing gastric tumors. Deep learning techniques can automatically extract features from endoscopic images and analyze them, significantly improving the detection rate of gastric cancer and serving as an important tool for auxiliary diagnosis. This paper reviews relevant literature in recent years, presenting the application of deep learning methods in the classification, object detection, and segmentation of gastric tumor endoscopic images. In addition, this paper also summarizes several computer-aided diagnosis (CAD) systems and multimodal algorithms related to gastric tumors, highlights the issues with current deep learning methods, and provides an outlook on future research directions, aiming to promote the clinical application of deep learning methods in the endoscopic diagnosis of gastric tumors.

    Release date: Export PDF Favorites Scan
  • Research progress of auxiliary diagnosis classification algorithm for lung tumor imaging

    The classification of lung tumor with the help of computer-aided diagnosis system is very important for the early diagnosis and treatment of malignant lung tumors. At present, the main research direction of lung tumor classification is the model fusion technology based on deep learning, which classifies the multiple fusion data of lung tumor with the help of radiomics. This paper summarizes the commonly used research algorithms for lung tumor classification, introduces concepts and technologies of machine learning, radiomics, deep learning and multiple data fusion, points out the existing problems and difficulties in the field of lung tumor classification, and looks forward to the development prospect and future research direction of lung tumor classification.

    Release date: Export PDF Favorites Scan
  • Review on ultrasonographic diagnosis of thyroid diseases based on deep learning

    In recent years, the incidence of thyroid diseases has increased significantly and ultrasound examination is the first choice for the diagnosis of thyroid diseases. At the same time, the level of medical image analysis based on deep learning has been rapidly improved. Ultrasonic image analysis has made a series of milestone breakthroughs, and deep learning algorithms have shown strong performance in the field of medical image segmentation and classification. This article first elaborates on the application of deep learning algorithms in thyroid ultrasound image segmentation, feature extraction, and classification differentiation. Secondly, it summarizes the algorithms for deep learning processing multimodal ultrasound images. Finally, it points out the problems in thyroid ultrasound image diagnosis at the current stage and looks forward to future development directions. This study can promote the application of deep learning in clinical ultrasound image diagnosis of thyroid, and provide reference for doctors to diagnose thyroid disease.

    Release date: Export PDF Favorites Scan
  • Cardiac magnetic resonance image segmentation based on lightweight network and knowledge distillation strategy

    To address the issue of a large number of network parameters and substantial floating-point operations in deep learning networks applied to image segmentation for cardiac magnetic resonance imaging (MRI), this paper proposes a lightweight dilated parallel convolution U-Net (DPU-Net) to decrease the quantity of network parameters and the number of floating-point operations. Additionally, a multi-scale adaptation vector knowledge distillation (MAVKD) training strategy is employed to extract latent knowledge from the teacher network, thereby enhancing the segmentation accuracy of DPU-Net. The proposed network adopts a distinctive way of convolutional channel variation to reduce the number of parameters and combines with residual blocks and dilated convolutions to alleviate the gradient explosion problem and spatial information loss that might be caused by the reduction of parameters. The research findings indicate that this network has achieved considerable improvements in reducing the number of parameters and enhancing the efficiency of floating-point operations. When applying this network to the public dataset of the automatic cardiac diagnosis challenge (ACDC), the dice coefficient reaches 91.26%. The research results validate the effectiveness of the proposed lightweight network and knowledge distillation strategy, providing a reliable lightweighting idea for deep learning in the field of medical image segmentation.

    Release date: Export PDF Favorites Scan
  • A review on multi-modal human motion representation recognition and its application in orthopedic rehabilitation training

    Human motion recognition (HAR) is the technological base of intelligent medical treatment, sports training, video monitoring and many other fields, and it has been widely concerned by all walks of life. This paper summarized the progress and significance of HAR research, which includes two processes: action capture and action classification based on deep learning. Firstly, the paper introduced in detail three mainstream methods of action capture: video-based, depth camera-based and inertial sensor-based. The commonly used action data sets were also listed. Secondly, the realization of HAR based on deep learning was described in two aspects, including automatic feature extraction and multi-modal feature fusion. The realization of training monitoring and simulative training with HAR in orthopedic rehabilitation training was also introduced. Finally, it discussed precise motion capture and multi-modal feature fusion of HAR, as well as the key points and difficulties of HAR application in orthopedic rehabilitation training. This article summarized the above contents to quickly guide researchers to understand the current status of HAR research and its application in orthopedic rehabilitation training.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content