Objective To explore the causes of vascular crisis after thumb and other finger reconstruction by toe-to-hand transfer and effective treatment methods so as to improve the survival rate of transplanted tissues. Methods Between February 2012 and October 2015, 59 cases of thumb and other finger defects were repaired with different hallux nail flaps with the same vascular pedicle flap to reconstruct thumb and other fingers and repair skin defect. The donor site was repaired by a perforator flap. A total of 197 free tissues were involved. There were 46 males and 13 females with the average age of 30.6 years (range, 18-42 years). Vascular crisis occurred in 21 free tissues (10.7%) of 17 patients, including 9 arterial crisis (4.6%) of 8 cases, and 12 venous crisis (6.1%) of 10 cases. Conservative treatment was performed first; in 8 free tissues of 7 cases after failure of conservative treatment, anastomotic thrombosis was found in 5 free tissues of 4 cases, twisted vascular pedicle in 1 free tissue of 1 case, surrounding hematoma in 1 free tissue of 1 case, and anastomotic thrombosis associated with hematoma in 1 free tissue of 1 case, which underwent clearing hematoma, resecting embolization, regulating vascular tension, re-anastomosis or vascular transplantation. Results In 8 cases of arterial crisis, 5 free tissues of 5 cases survived after conservative treatment; partial necrosis occurred in 1 free tissue (1 case) of 4 free tissues (3 cases) undergoing surgical exploration. In 10 cases of venous crisis, 1 free tissue necrosis and 1 free tissue partial necrosis occurred in 8 free tissues (6 cases) undergoing conservative treatment; partial necrosis occurred in 1 free tissue of 4 free tissues (4 cases) undergoing surgical exploration. Free flap and skin graft were performed on 2 free tissues of 4 cases having flap necrosis respectively. Conclusion Vascular crisis is complex and harmful to survival of transplanted tissue in reconstruction of the thumb and other fingers. Immediate intervention is helpful to obtain a higher survival rate.
Objective To explore the application value of infrared thermography in the design and harvesting of ultrathin anterolateral thigh perforator flaps. Methods Between June 2024 and December 2024, 9 cases of ultrathin anterolateral thigh perforator flaps were designed and harvested with the assistance of infrared thermography. There were 7 males and 2 females, aged 21-61 years (mean, 39.8 years). The body mass index ranged from 19.49 to 26.45 kg/m² (mean, 23.85 kg/m²). Causes of injury included 5 cases of traffic accident injuries and 4 cases of machine crush injuries. There were 3 cases of leg wounds, 2 cases of foot wounds, and 4 cases of hand wounds. After debridement, the size of wound ranged from 7 cm×4 cm to 13 cm×11 cm. The time from admission to flap repair surgery was 5-12 days (mean, 7 days). Preoperatively, perforator localization was performed using a traditional Doppler flow detector and infrared thermography, respectively. The results were compared with the actual intraoperative locations; a discrepancy ≤10 mm was considered as consistent localization (positive), and the positive predictive value was calculated. All 9 cases were repaired with ultrathin anterolateral thigh perforator flaps designed and harvested based on thermographic images. The size of flap ranged from 8 cm×5 cm to 14 cm×8 cm, with a thickness of 3-6 mm (mean, 5.2 mm). One donor site was repaired with a full-thickness skin graft, and the others were sutured directly. Postoperatively, anti-inflammatory, anticoagulant, and anti-vascular spasm treatments were administered, and follow-up was conducted. ResultsThe Doppler flow detector identified 22 perforating vessels within the set range, among which 16 were confirmed as superficial fascia layer perforators intraoperatively, with a positive predictive value of 72.7%. The infrared thermograph detected 23 superficial fascia layer perforating vessels, and 21 were verified intraoperatively, with a positive predictive value of 91.3%. There was no significant difference between the two methods [OR (95%CI)=3.93 (0.70, 22.15), P=0.100]. The perforator localization time of the infrared thermograph was (5.1±1.3) minutes, which was significantly shorter than that of the Doppler flow detector [(10.1±2.6) minutes], with a significant difference [MD (95%CI)=–5.00 (–7.08, –2.91), P<0.001]. Postoperatively, 1 case of distal flap necrosis healed after dressing changes; all other flaps survived successfully. The skin grafts at donor site survived, and all incisions healed by first intention. All patients were followed up 3-6 months (mean, 4.7 months). No pain or other discomfort occurred at the donor or recipient sites. All patients with foot wounds could walk with shoes, and no secondary flap revision was required. Flaps in 3 hand wound cases, 2 foot wound cases, and 3 leg wound cases recovered light touch and pressure sensation, but not pain or temperature sensation; the remaining 2 cases had no sensory recovery. ConclusionPreoperative localization using infrared thermography for repairing ultrathin anterolateral thigh perforator flaps can help evaluate the blood supply status of perforators, reduce complications, and improve surgical safety and flap survival rate.