west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "ZHANG Chenxi" 2 results
  • Application of delayed replantation of degloving skin preserved at 4℃ in treatment of limb degloving injuries

    ObjectiveTo investigate the effectiveness of delayed replantation of degloving skin preserved at 4℃ in treatment of limb degloving injuries. Methods Between October 2020 and October 2023, 12 patients with limb degloving injuries were admitted. All patients had severe associated injuries or poor wound conditions that prevented primary replantation. There were 7 males and 5 females; age ranged from 29 to 46 years, with an average of 39.2 years. The causes of injury included machine entanglement in 6 cases, traffic accidents in 5 cases, and sharp instrument cuts in 1 case. Time from injury to hospital admission was 0.5-3.0 hours, with an average of 1.3 hours. Injury sites included upper limbs in 7 cases and lower limbs in 5 cases. The range of degloving skin was from 5 cm×4 cm to 15 cm×8 cm, and all degloving skins were intact. The degloving skin was preserved at 4℃. After the patient’s vital signs became stable and the wound conditions improved, it was trimmed into medium-thickness skin grafts for replantation. The degloving skin was preserved for 3 to 7 days. At 4 weeks after replantation, the viability of the degloving skin grafts was assessed, including color, elasticity, and sensation of pain. The Vancouver Scar Scale (VSS) was used to assess the scars of the skin grafts during follow-up. Results At 4 weeks after replantation, 8 cases of skin grafts completely survived and the color was similar with normal skin, with a survival rate of 66.67%. The elasticity of skin grafts (R0 value) ranged from 0.09 to 0.85, with an average of 0.55; moderate pain was reported in 4 cases, mild pain in 3 cases, and no pain in 5 cases. All patients were followed up 12 months. Over time, the VSS scores of all 12 patients gradually decreased, with a range of 4-11 at 12 months (mean, 6.8). Conclusion For limb degloving injuries that cannot be replanted immediately and do not have the conditions for deep low-temperature freezing preservation, the method of preserving the degloving skin at 4℃ for delayed replantation can be chosen.

    Release date: Export PDF Favorites Scan
  • Infrared thermography-assisted design and harvesting of ultrathin anterolateral thigh perforator flaps

    Objective To explore the application value of infrared thermography in the design and harvesting of ultrathin anterolateral thigh perforator flaps. Methods Between June 2024 and December 2024, 9 cases of ultrathin anterolateral thigh perforator flaps were designed and harvested with the assistance of infrared thermography. There were 7 males and 2 females, aged 21-61 years (mean, 39.8 years). The body mass index ranged from 19.49 to 26.45 kg/m² (mean, 23.85 kg/m²). Causes of injury included 5 cases of traffic accident injuries and 4 cases of machine crush injuries. There were 3 cases of leg wounds, 2 cases of foot wounds, and 4 cases of hand wounds. After debridement, the size of wound ranged from 7 cm×4 cm to 13 cm×11 cm. The time from admission to flap repair surgery was 5-12 days (mean, 7 days). Preoperatively, perforator localization was performed using a traditional Doppler flow detector and infrared thermography, respectively. The results were compared with the actual intraoperative locations; a discrepancy ≤10 mm was considered as consistent localization (positive), and the positive predictive value was calculated. All 9 cases were repaired with ultrathin anterolateral thigh perforator flaps designed and harvested based on thermographic images. The size of flap ranged from 8 cm×5 cm to 14 cm×8 cm, with a thickness of 3-6 mm (mean, 5.2 mm). One donor site was repaired with a full-thickness skin graft, and the others were sutured directly. Postoperatively, anti-inflammatory, anticoagulant, and anti-vascular spasm treatments were administered, and follow-up was conducted. ResultsThe Doppler flow detector identified 22 perforating vessels within the set range, among which 16 were confirmed as superficial fascia layer perforators intraoperatively, with a positive predictive value of 72.7%. The infrared thermograph detected 23 superficial fascia layer perforating vessels, and 21 were verified intraoperatively, with a positive predictive value of 91.3%. There was no significant difference between the two methods [OR (95%CI)=3.93 (0.70, 22.15), P=0.100]. The perforator localization time of the infrared thermograph was (5.1±1.3) minutes, which was significantly shorter than that of the Doppler flow detector [(10.1±2.6) minutes; MD (95%CI)=–5.00 (–7.08, –2.91), P<0.001]. Postoperatively, 1 case of distal flap necrosis healed after dressing change; all other flaps survived successfully. The skin grafts at donor site survived, and all incisions healed by first intention. All patients were followed up 3-6 months (mean, 4.7 months). No pain or other discomfort occurred at the donor or recipient sites. All patients with foot wounds could walk with shoes, and no secondary flap revision was required. Flaps in 3 hand wound cases, 2 foot wound cases, and 3 leg wound cases recovered light touch and pressure sensation, but not pain or temperature sensation; the remaining 2 cases had no sensory recovery.ConclusionPreoperative localization using infrared thermography for repairing ultrathin anterolateral thigh perforator flaps can help evaluate the blood supply status of perforators, reduce complications, and improve surgical safety and flap survival rate.

    Release date:2025-09-01 10:12 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content