west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone cement" 21 results
  • Application of antibiotic bone cement-coated plates internal fixation for primary treating Gustilo type ⅢB tibiofibular open fracture

    ObjectiveTo explore the effectiveness of using antibiotic bone cement-coated plates internal fixation technology as a primary treatment for Gustilo type ⅢB tibiofibular open fractures. Methods The clinical data of 24 patients with Gustilo type ⅢB tibiofibular open fractures who were admitted between January 2018 and December 2021 and met the selection criteria was retrospectively analyzed. Among them, there were 18 males and 6 females, aged from 25 to 65 years with an average age of 45.8 years. There were 3 cases of proximal tibial fracture, 6 cases of middle tibial fracture, 15 cases of distal tibial fracture, and 21 cases of fibular fracture. The time from injury to emergency surgery ranged from 3 to 12 hours, with an average of 5.3 hours. All patients had soft tissue defects ranging from 10 cm×5 cm to 32 cm×15 cm. The time from injury to skin flap transplantation for wound coverage ranged from 1 to 7 days, with an average of 4.1 days, and the size of skin flap ranged from 10 cm×5 cm to 33 cm×15 cm. Ten patients had bone defects with length of 2-12 cm (mean, 7.1 cm). After emergency debridement, the tibial fracture end was fixed with antibiotic bone cement-coated plates, and the bone defect area was filled with antibiotic bone cement. Within 7 days, the wound was covered with a free flap, and the bone cement was replaced while performing definitive internal fixation of the fracture. In 10 patients with bone defect, all the bone cement was removed and the bone defect area was grafted after 7-32 weeks (mean, 11.8 weeks). The flap survival, wound healing of the affected limb, complications, and bone healing were observed after operation, and the quality of life was evaluated according to the short-form 36 health survey scale (SF-36 scale) [including physical component summary (PCS) and mental component summary (MCS) scores] at 1 month, 6 months after operation, and at last follow-up. ResultsAll 24 patients were followed up 14-38 months (mean, 21.6 months). All the affected limbs were successfully salvaged and all the transplanted flaps survived. One case had scar hyperplasia in the flap donor site, and 1 case had hypoesthesia (grade S3) of the skin around the scar. There were 2 cases of infection in the recipient area of the leg, one of which was superficial infection after primary flap transplantation and healed after debridement, and the other was sinus formation after secondary bone grafting and was debrided again 3 months later and treated with Ilizarov osteotomy, and healed 8 months later. The bone healing time of the remaining 23 patients ranged from 4 to 9 months, with an average of 6.1 months. The scores of PCS were 44.4±6.5, 68.3±8.3, 80.4±6.9, and the scores of MCS were 59.2±8.2, 79.5±7.8, 90.0±6.6 at 1 month, 6 months after operation, and at last follow-up, respectively. The differences were significant between different time points (P<0.05). ConclusionAntibiotic bone cement-coated plates internal fixation can be used in the primary treatment of Gustilo type ⅢB tibiofibular open fractures, and has the advantages of reduce the risk of infection in fracture fixation, reducing complications, and accelerating the functional recovery of patients.

    Release date:2024-05-13 02:25 Export PDF Favorites Scan
  • Confidence HIGH VISCOSITY BONE CEMENT SYSTEM AND POSTURAL REDUCTION IN TREATING ACUTE SEVERE OSTEOPOROTIC VERTEBRAL COMPRESSION FRACTURES

    Objective To evaluate the effectiveness of Confidence high viscosity bone cement system and postural reduction in treating acute severe osteoporotic vertebral compression fracture (OVCF). Methods Between June 2004 and June2009, 34 patients with acute severe OVCF were treated with Confidence high viscosity bone cement system and postural reduction. There were 14 males and 20 females with an average age of 72.6 years (range, 62-88 years). All patients had single thoracolumbar fracture, including 4 cases of T11, 10 of T12, 15 of L1, 4 of L2, and 1 of L3. The bone density measurement showed that T value was less than —2.5. The time from injury to admission was 2-72 hours. All cases were treated with postural reduction preoperatively. The time of reduction in over-extending position was 7-14 days. All patients were injected unilaterally. The injected volume of high viscosity bone cement was 2-6 mL (mean, 3.2 mL). Results Cement leakage was found in 3 cases (8.8%) during operation, including leakage into intervertebral space in 2 cases and into adjacent paravertebral soft tissue in 1 case. No cl inical symptom was observed and no treatment was pearformed. No pulmonary embolism, infection, nerve injury, or other complications occurred in all patients. All patients were followed up 12-38 months (mean, 18.5 months). Postoperatively, complete pain rel ief was achievedin 31 cases and partial pain refief in 3 cases; no re-fracture or loosening at the interface occurred. At 3 days after operation and last follow-up, the anterior and middle vertebral column height, Cobb angle, and visual analogue scale (VAS) score were improved significantly when compared with those before operation (P lt; 0.05);and there was no significant difference between 3 days and last follow-up (P gt; 0.05). Conclusion Confidence high viscosity bone cement system and postural reduction can be employed safely in treating acute severe OVCF, which has many merits of high viscosity, long time for injection, and easy-to-control directionally.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • Biomechanical study of polymethyl methacrylate bone cement and allogeneic bone for strengthening sheep vertebrae

    ObjectiveTo investigate the feasibility and mechanical properties of polymethyl methacrylate (PMMA) bone cement and allogeneic bone mixture to strengthen sheep vertebrae with osteoporotic compression fracture.MethodsA total of 75 lumbar vertebrae (L1-L5) of adult goats was harvested to prepare the osteoporotic vertebral body model by decalcification. The volume of vertebral body and the weight and bone density before and after decalcification were measured. And the failure strength, failure displacement, and stiffness were tested by using a mechanical tester. Then the vertebral compression fracture models were prepared and divided into 3 groups (n=25). The vertebral bodies were injected with allogeneic bone in group A, PMMA bone cement in group B, and mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 in group C. After CT observation of the implant distribution in the vertebral body, the failure strength, failure displacement, and stiffness of the vertebral body were measured again.ResultsThere was no significant difference in weight, bone density, and volume of vertebral bodies before decalcification between groups (P>0.05). After decalcification, there was no significant difference in bone density, decreasing rate, and weight between groups (P>0.05). There were significant differences in vertebral body weight and bone mineral density between pre- and post-decalcification in 3 groups (P<0.05). CT showed that the implants in each group were evenly distributed in the vertebral body with no leakage. Before fracture, the differences in vertebral body failure strength, failure displacement, and stiffness between groups were not significant (P>0.05). After augmentation, the failure displacement of group A was significantly greater than that of groups B and C, and the failure strength and stiffness were less than those of groups B and C, the failure displacement of group C was greater than that of group B, and the failure strength and stiffness were less than those of group B, the differences between groups were significant (P<0.05). Except for the failure strength of group A (P>0.05), the differences in the failure strength, failure displacement, and stiffness before fracture and after augmentation in the other groups were significant (P<0.05).ConclusionThe mixture of allogeneic bone and PMMA bone cement in a ratio of 1∶1 can improve the strength of the vertebral body of sheep osteoporotic compression fractures and restore the initial stiffness of the vertebral body. It has good mechanical properties and can be used as one of the filling materials in percutaneous vertebroplasty.

    Release date:2021-04-27 09:12 Export PDF Favorites Scan
  • Effect of percutaneous kyphoplasty with different phases bone cement for treatment of osteoporotic vertebral compression fractures

    ObjectiveTo compare the effect of percutaneous kyphoplasty (PKP) with different phases bone cement for treatment of osteoporotic vertebral compression fracture (OVCF).MethodsThe clinical data of 219 OVCF patients who treated with PKP and met the selection criteria between June 2016 and May 2018 were retrospectively analyzed. According to the different time of intraoperative injection of bone cement, they were divided into observation group [116 cases, intraoperative injection of polymethyl methacrylate (PMMA) bone cement in low-viscosity wet-sand phase)] and control group (103 cases, intraoperative injection of PMMA bone cement in low-viscosity wire-drawing phase). There was no significance in general date of gender, age, disease duration, body mass index, bone mineral density T value, fracture vertebral body, preoperative fracture severity of the responsible vertebral body, anterior height ratio of the responsible vertebral body, preoperative pain visual analogue scale (VAS) score, and Oswestry disability index (ODI) between the two groups (P>0.05). The VAS score and ODI score were used to evaluate the improvement of patients’ symptoms at immediate, 2 days, 3 months after operation and at last follow-up. At 1 day, 3 months after operation, and at last follow-up, X-ray film and CT of spine were reexamined to observe the distribution of bone cement in the vertebral body, bone cement leakage, and other complications. During the follow-up, the refracture rate of the responsible vertebral body and the fracture rate of the adjacent vertebral body were recorded.ResultsThe injection amount of bone cement in the observation group and control group were (4.53±0.45) mL and (4.49±0.57) mL, respectively, showing no significant difference between the two groups (t=1.018, P=0.310). Patients in both groups were followed up 6-18 months (mean, 13.3 months). There were 95 cases (81.9%) and 72 cases (69.9%) of the bone cement distribution range more than 49% of the cross-sectional area of the vertebral body in the observation group and the control group, respectively, showing significant difference in the incidence between the two groups (χ2=4.334, P=0.037). The VAS score and ODI score of the postoperative time points were significantly improved compared with those before operation (P<0.05), and there were significant differences among the postoperative time points (P<0.05). The VAS score and ODI score of the observation group were significantly better than those of the control group (P<0.05) at immediate, 2 days, and 3 months after operation, and there was no significant difference between the two groups at last follow-up (P>0.05). At 1 day after operation, the cement leakage occurred in 18 cases of the observation group (8 cases of venous leakage, 6 cases of paravertebral leakage, 4 cases of intradiscal leakage) and in 22 cases of the control group (9 cases of venous leakage, 8 cases of paravertebral leakage, 5 cases of intradiscal leakage). There was no significant difference between the two groups (P>0.05). During the follow-up, 5 cases (4.3%) in the observation group, 12 cases (11.7%) in the control group had responsible vertebral refracture, and 6 cases (5.2%) in the observation group and 14 cases (13.6%) in the control group had adjacent vertebral fracture, the differences were significant (χ2=4.105, P=0.043; χ2=4.661, P=0.031).ConclusionBone cement injection with wet-sand phase in PKP is beneficial for the bone cement evenly distributed, strengthening the responsible vertebral, relieving the short-term pain after operation, decreasing the rate of responsible vertebral refracture and adjacent vertebral fracture without increasing the incidence of relevant complications and can enhance the effectiveness.

    Release date:2020-04-29 03:03 Export PDF Favorites Scan
  • Effect of injury degree of osteoporotic vertebral compression fracture on bone cement cortical leakage after percutaneous kyphoplasty

    ObjectiveTo analyze the correlation between bone cement cortical leakage and injury degree of osteoporotic vertebral compression fracture (OVCF) after percutaneous kyphoplasty (PKP), and to provide guidance for reducing clinical complications. Methods A clinical data of 125 patients with OVCF who received PKP between November 2019 and December 2021 and met the selection criteria was selected and analyzed. There were 20 males and 105 females. The median age was 72 years (range, 55-96 years). There were 108 single-segment fractures, 16 two-segment fractures, and 1 three-segment fracture. The disease duration ranged from 1 to 20 days (mean, 7.2 days). The amount of bone cement injected during operation was 2.5-8.0 mL, with an average of 6.04 mL. Based on the preoperative CT images, the standard S/H ratio of the injured vertebra was measured (S: the standard maximum rectangular area of the cross-section of the injured vertebral body, H: the standard minimum height of the sagittal position of the injured vertebral body). Based on postoperative X-ray films and CT images, the occurrence of bone cement leakage after operation and the cortical rupture at the cortical leakage site before operation were recorded. The correlation between the standard S/H ratio of the injured vertebra and the number of cortical leakage was analyzed. Results Vascular leakage occurred in 67 patients at 123 sites of injured vertebrae, and cortical leakage in 97 patients at 299 sites. Preoperative CT image analysis showed that there were 287 sites (95.99%, 287/299) of cortical leakage had cortical rupture before operation. Thirteen patients were excluded because of vertebral compression of adjacent vertebrae. The standard S/H ratio of 112 injured vertebrae was 1.12-3.17 (mean, 1.67), of which 87 cases (268 sites) had cortical leakage. The Spearman correlation analysis showed a positive correlation between the number of cortical leakage of injured vertebra and the standard S/H ratio of injured vertebra (r=0.493, P<0.001). ConclusionThe incidence of cortical leakage of bone cement after PKP in OVCF patients is high, and cortical rupture is the basis of cortical leakage. The more severe the vertebral injury, the greater the probability of cortical leakage.

    Release date:2023-04-11 09:43 Export PDF Favorites Scan
  • Effectiveness of posterior short-segmental fixation with bone cement augmentation for stage Ⅲ Kümmell’s disease with spinal canal stenosis

    Objective To investigate the effectiveness of posterior short-segmental fixation with bone cement augmentation in treatment of stage Ⅲ Kümmell’s disease with spinal canal stenosis. Methods Between June 2012 and January 2017, 36 patients with stage Ⅲ Kümmell’s disease and spinal canal stenosis were treated by posterior short-segmental fixation and bone cement augmentation. There were 12 males and 24 females, aged 55-83 years (mean, 73.5 years). The disease duration ranged from 2 to 8 months, with an average of 4.6 months. Preoperative bone mineral density examination showed that all patients had different degrees of osteoporosis in the spines. The lesion segments included T10 in 4 cases, T11 in 7 cases, T12 in 8 cases, L1 in 9 cases, and L2 in 8 cases. The preoperative neural function was classified as grade B in 4 cases, grade C in 12 cases, grade D in 13 cases, and grade E in 7 cases according to Frankle classification. The operation time, intraoperative blood loss, and the volume of injected bone cement, and hospital stay were recorded. The visual analogue scale (VAS) score, Oswestry Disability Index (ODI), kyphotic Cobb angle, and the height of anterior edge of injured vertebra were recorded before operation, at 1 week after operation, and at last follow-up; and the leakage of bone cement was observed. Results All operations were completed successfully. The operation time was 90-145 minutes (mean, 110.6 minutes); the intraoperative blood loss was 198-302 mL (mean, 242.5 mL); the volume of injected bone cement was 8.3-10.5 mL (mean, 9.2 mL); the hospital stays were 7-12 days (mean, 8.3 days). All patients were followed up 12-26 months (mean, 24.5 months). At 1 week after operation, the neural function was classified as grade B in 2 cases, grade C in 8 cases, grade D in 12 cases, and grade E in 14 cases, which was significantly improved when compared with that before operation (Z=2.000, P=0.047). The VAS score, ODI, the height of anterior edge of injured vertebra, and Cobb angle were significantly improved at 1 week and last follow-up when compared with preoperative values (P<0.05); but there was no significant difference between 1 week and last follow-up (P>0.05). Two cases had asymptomatic cement leakage to the intervertebral disc at 1 week after operation; and 1 case had adjacent vertebral fracture at 8 months after operation. No complication such as loosening or breaking of internal fixator occurred during the follow-up. Conclusion Posterior short-segmental fixation with bone cement augmentation is a safe and effective surgical scheme for stage Ⅲ Kümmell’s disease combined with spinal canal stenosis, which can avoid the aggravation of nerve injury and complications related to staying in bed.

    Release date:2019-06-04 02:16 Export PDF Favorites Scan
  • Application of homemade antibiotic bone cement rod in tibial screw canal osteomyelitis

    Objective To investigate the effectiveness of homemade antibiotic bone cement rod in the treatment of tibial screw canal osteomyelitis by Masquelet technique. Methods A clinical data of 52 patients with tibial screw canal osteomyelitis met the criteria between October 2019 and September 2020 was retrospectively analyzed. There were 28 males and 24 females, with an average age of 38.6 years (mean, 23-62 years). The tibial fractures were treated with internal fixation in 38 cases and external fixation in 14 cases. The duration of osteomyelitis was 6 months to 20 years with a median of 2.3 years. The bacterial culture of wound secretions showed 47 positive cases, of which 36 cases were infected with single bacteria and 11 cases were infected with mixed bacteria. After thorough debridement and removal of internal and external fixation devices, the locking plate was used to fixed the bone defect. The tibial screw canal was filled with the antibiotic bone cement rod. The sensitive antibiotics were given after operation and the 2nd stage treatment was performed after infection control. The antibiotic cement rod was removed and the bone grafting in the induced membrane was performed. After operation, the clinical manifestations, wound, inflammatory indexes, and X-ray films were monitored dynamically, and the postoperative bone infection control and bone graft healing were evaluated. Results Both patients successfully completed the two stages of treatments. All patients were followed up after the 2nd stage treatment. The follow-up time was 11 to 25 months (mean, 18.3 months). One patient had poor wound healing and the wound healed after enhanced dressing change. X-ray film showed that the bone grafting in the bone defect healed and the healing time was 3-6 months, with an average of 4.5 months. The patient had no recurrence of infection during the follow-up period. Conclusion For the tibial screw canal osteomyelitis, the homemade antibiotic bone cement rod can reduce the recurrence rate of infection and obtain a good effectiveness, and has the advantages of simple operation and less postoperative complications.

    Release date:2023-02-13 09:57 Export PDF Favorites Scan
  • IN VlVO EXPERIMENT OF POROUS BIOACTIVE BONE CEMENT MODIFIED BY BIOGLASS AND CHITOSAN

    Objective To investigate the biomechanical properties of porous bioactive bone cement (PBC) in vivo and to observe the degradation of PBC and new bone formation histologically. Methods According to the weight percentage (W/ W, %) of polymethylmethacrylate (PMMA) to bioglass to chitosan, 3 kinds of PBS powders were obtained: PBC I (50 ︰ 40 ︰ 10), PBC II (40 ︰ 50 ︰ 10), and PBC III (30 ︰ 60 ︰ 10). The bilateral femoral condylar defect model (4 mm in diameter and 10 mm in depth) was established in 32 10-month-old New Zealand white rabbits (male or female, weighing 4.0-4.5 kg), which were randomly divided into 4 groups (n=8); pure PMMA (group A), PBC I (group B), PBC II (group C), and PBC III (group D) were implanted in the bilateral femoral condylar defects, respectively. Gross observation were done after operation. X-ray films were taken after 1 week. At 3 and 6 months after operation, the bone cement specimens were harvested for mechanical test and histological examination. Four kinds of unplanted cement were also used for biomechanical test as control. Results All rabbits survived to the end of experiment. The X-ray films revealed the location of bone cement was at the right position after 1 week. Before implantation, at 3 months and 6 months after operation, the compressive strength and elastic modulus of groups C and D decreased significantly when compared with those of group A (P lt; 0.05), but no significant difference was found between groups C and D (P gt; 0.05); the compressive strength at each time point and elastic modulus at 3 and 6 months of group B decreased significantly when compared with those of group A (P lt; 0.05). Before implantation and at 3 months after operation, the compressive strength and elastic modulus of groups C and D decreased significantly when compared with those of group B (P lt; 0.05); at 6 months after operation, the compressive strength of group C and the elastic modulus of group D were significantly lower than those of group B (P lt; 0.05). The compressive strength and elastic modulus at 3 and 6 months after operation significantly decreased when compared with those before implantation in groups B, C, and D (P lt; 0.05), but no significant difference was found in group A (P lt; 0.05). At 3 months after operation, histological observation showed that a fibrous tissue layer formed between the PMMA cement and bone in group A, while chitosan particles degraded with different levels in groups B, C, and D, especially in group D. At 6 months after operation, chitosan particles partly degraded in groups B, C, and D with an amount of new bone ingrowth, and groups C and D was better than group B in bone growth; group A had no obvious change. Quantitative analysis results showed that the bone tissue percentage was gradually increased in the group A to group D, and the bone tissue percentage at 6 months after operation was significantly higher than that at 3 months within the group. Conclusion According to the weight percentage (W/W, %) of PMMA to bioglass to chitosan, PBCs made by the composition of 40 ︰ 50 ︰ 10 and 30 ︰ 60 ︰ 10 have better biocompatibility and biomechanical properties than PMMA cement, it may reduce the fracture risk of the adjacent vertebrae after vertebroplasty.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • Effects of different puncture levels in bilateral percutaneous vertebroplasty on distribution of bone cement and effectiveness of osteoporotic thoracolumbar compression fractures

    Objective To investigate the effects of different puncture levels on bone cement distribution and effectiveness in bilateral percutaneous vertebroplasty for osteoporotic thoracolumbar compression fractures. Methods A clinical data of 274 patients with osteoporotic thoracolumbar compression fractures who met the selection criteria between December 2017 and December 2020 was retrospectively analyzed. All patients underwent bilateral percutaneous vertebroplasty. During operation, the final position of the puncture needle tip reached was observed by C-arm X-ray machine. And 118 cases of bilateral puncture needle tips were at the same level (group A); 156 cases of bilateral puncture needle tips were at different levels (group B), of which 87 cases were at the upper 1/3 layer and the lower 1/3 layer respectively (group B1), and 69 cases were at the adjacent levels (group B2). There was no significant difference in gender, age, fracture segment, degree of osteoporosis, disease duration, and preoperative visual analogue scale (VAS) score, and Oswestry disability index (ODI) between groups A and B and among groups A, B1, and B2 (P>0.05). The operation time, bone cement injection volume, postoperative VAS score, ODI, and bone cement distribution were compared among the groups. Results All operations were successfully completed without pulmonary embolism, needle tract infection, or nerve compression caused by bone cement leakage. There was no significant difference in operation time and bone cement injection volume between groups A and B or among groups A, B1, and B2 (P>0.05). All patients were followed up 3-32 months, with an average of 7.8 months. There was no significant difference in follow-up time between groups A and B and among groups A, B1, and B2 (P>0.05). At 3 days after operation and last follow-up, VAS score and ODI were significantly lower in group B than in group A (P<0.05), in groups B1 and B2 than in group A (P<0.05), and in group B1 than in group B2 (P<0.05). Imaging review showed that the distribution of bone cement in the coronal midline of injured vertebrae was significantly better in group B than in group A (P<0.05), in groups B1 and B2 than in group A (P<0.05), and in group B1 than in group B2 (P<0.05). In group A, 7 cases had postoperative vertebral collapse and 8 cases had other vertebral fractures. In group B, only 1 case had postoperative vertebral collapse during follow-up. ConclusionBilateral percutaneous vertebroplasty in the treatment of osteoporotic thoracolumbar compression fractures can obtain good bone cement distribution and effectiveness when the puncture needle tips locate at different levels during operation. When the puncture needle tips locate at the upper 1/3 layer and the lower 1/3 layer of the vertebral body, respectively, the puncture sites are closer to the upper and lower endplates, and the injected bone cement is easier to connect with the upper and lower endplates.

    Release date:2023-03-13 08:33 Export PDF Favorites Scan
  • CLASSIFICATION AND TREATMENT STRATEGIES OF SYMP TOMATIC SEVERE OSTEOPOROTIC VERTEBRAL FRACTURE AND COLLAPSE

    ObjectiveTo investigate the classification and treatment strategies of symptomatic severe osteoporotic vertebral fracture and collapse. MethodsBetween August 2010 and January 2014, 42 patients with symptomatic severe osteoporotic vertebral fracture and collapse were treated, and the clinical data were retrospectively analyzed. According to clinical symptom and imaging materials, 23 cases were classified as type I (local pain, limitation of motion, no neurological symptom, and no obvious deformity), 12 cases as type II (slight neurological symptom and kyphotic Cobb angle ≤ 30°), and 7 cases as type III (severe neurological symptom and kyphotic Cobb angle <30°). In 23 type I patients, 17 underwent percutaneous vertebral augmentation, 6 underwent posterior pedicle screw fixation strengthened with bone cement combined with percutaneous vertebral augmentation. In 12 type II patients, they were treated with local spinal decompression and internal fixation strengthened with bone cement. In 7 type III patients, 5 underwent posterior osteotomy, and 2 underwent one stage posterior approach of vertebral resection and reconstruction. The visual analogue scale (VAS), Oswestry disability index (ODI), and local kyphotic Cobb angle were used to evaluate the neurological function. The complications were recorded. ResultsThe operation was successfully completed in all patients. Wound infection and ketoacidosis secondary to stress blood glucose rise occurred in 1 case of type III patients respectively, and were cured after corresponding treatment; primary healing of wound was obtained in the other patients. The patients were followed up from 6 to 36 months (mean, 11.6 months). The nerve function was improved in 17 cases, and micturition disability was observed in 2 cases. Asymptomatic cement leakage occurred in 13 cases (30.95%) (7 cases in type I, 4 cases in type II, and 2 cases in type III). No bone cement dislocation and internal fixation failure were found during follow-up. The VAS score, ODI, and the local kyphotic Cobb angle at 1 week and last follow-up were significantly improved when compared with preoperative ones (P<0.05), but no significant difference was found between at 1 week and last follow-up (P>0.05). ConclusionIn order to improve the effectiveness and reduce the risk and complications of operation, individualized strategies should be performed according to different types of severe osteoporotic vertebral fracture and collapse.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content