west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone marrow mesenchymal stem cell" 43 results
  • REGULATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS OSTEOGENIC AND ADIPOGENIC DIFFERENTIATIONS BY Wnt10b ADENOVIRAL VECTOR IN VITRO

    ObjectiveTo investigate the regulation of human bone marrow mesenchymal stem cells (hBMSCs) osteogenic and adipogenic differentiations mediated by Wnt10b adenoviral vector in vitro. MethodsThe hBMSCs from ilial bone tissue in adults at passage 4 were infected by Wnt10b gene expression adenoviral vector (group A), Wnt10b-shRNA adenoviral vector (group B), and empty vector (group C), and non-transfected hBMSCs served as the blank control group. Then the cells were cultured separately in the circumstance of osteogenic induction, adipogenic induction, and non-induction. The alkaline phosphatase (ALP) staining, alizarin red staining, and oil red O staining were used to detect the osteogenic and adipogenic differentiations; real-time fluorescent quantitative PCR and Western blot were used to analyze the expressions of osteoblast and adipocyte genes and proteins. ResultsThe results of ALP staining were positive after osteogenic induction, group A showed strong staining, and group B showed the weakest staining. The results of alizarin red staining showed that there were a lot of patchy confluent brown mineralized nodules in group A; a few punctate brown mineralized nodules were seen in group B; and many punctuate brown mineralized nodules were found in groups C and D. The results of oil red O staining showed strong staining in groups B, C, and D after adipogenic induction, especially in group B; scattered or small clustered staining was observed in group A. The expressions of osteoblast genes and proteins were significantly higher in group A than groups B, C, and D, and in groups C and D than group B by real-time fluorescent quantitative PCR and Western blot test; however, the expressions of adipocyte genes and proteins showed a contrary tendency. ConclusionThe high level expression of Wnt10b can enhance osteogenic differentiation of hBMSCs, and the low level expression of Wnt10b can increase adipogenic differentiation of hBMSCs.

    Release date: Export PDF Favorites Scan
  • Effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells in repair of neurological deficit after traumatic brain injury in rats

    ObjectiveTo investigate the possibility and effect of chitosan porous scaffolds combined with bone marrow mesenchymal stem cells (BMSCs) in repair of neurological deficit after traumatic brain injury (TBI) in rats.MethodsBMSCs were isolated, cultured, and passaged by the method of bone marrow adherent culture. The 3rd generation BMSCs were identified by the CD29 and CD45 surface antigens and marked by 5-bromo-2-deoxyuridine (BrdU). The chitosan porous scaffolds were produced by the method of freeze-drying. The BrdU-labelled BMSCs were co-cultured in vitro with chitosan porous scaffolds, and were observed by scanning electron microscopy. MTT assay was used to observe the cell growth within the scaffold. Fifty adult Sprague Dawley rats were randomly divided into 5 groups with 10 rats in each group. The rat TBI model was made in groups A, B, C, and D according to the principle of Feeney’s free fall combat injury. Orthotopic transplantation was carried out at 72 hours after TBI. Group A was the BMSCs and chitosan porous scaffolds transplantation group; group B was the BMSCs transplantation group; group C was the chitosan porous scaffolds transplantation group; group D was the complete medium transplantation group; and group E was only treated with scalp incision and skull window as sham-operation group. Before TBI and at 1, 7, 14, and 35 days after TBI, the modified neurological severity scores (mNSS) was used to measure the rats’ neurological function. The Morris water maze tests were used after TBI, including the positioning voyage test (the incubation period was detected at 31-35 days after TBI, once a day) and the space exploration test (the number of crossing detection platform was detected at 35 days after TBI). At 36 days after TBI, HE staining and immunohistochemistry double staining [BrdU and neurofilament triplet H (NF-H) immunohistochemistry double staining, and BrdU and glial fibrillary acidic protein (GFAP) immunohistochemistry double staining] were carried out to observe the transplanted BMSCs’ migration and differentiation in the damaged brain areas.ResultsFlow cytometry test showed that the positive rate of CD29 of the 3rd generation BMSCs was 98.49%, and the positive rate of CD45 was only 0.85%. After co-cultured with chitosan porous scaffolds in vitrofor 48 hours, BMSCs were spindle-shaped and secreted extracellular matrix to adhere in the scaffolds. MTT assay testing showed that chitosan porous scaffolds had no adverse effects on the BMSCs’ proliferation. At 35 days after TBI, the mNSS scores and the incubation period of positioning voyage test in group A were lower than those in groups B, C, and D, and the number of crossing detection platform of space exploration test in group A was higher than those in groups B, C, and D, all showing significant differences (P<0.05); but no significant difference was found between groups A and E in above indexes (P>0.05). HE staining showed that the chitosan porous scaffolds had partially degraded, and they integrated with brain tissue well in group A; the degree of repair in groups B, C, and D were worse than that of group A. Immunohistochemical double staining showed that the transplanted BMSCs could survive and differentiate into neurons and glial cells, some differentiated neural cells had relocated at the normal brain tissue; the degree of repair in groups B, C, and D were worse than that of group A.ConclusionThe transplantation of chitosan porous scaffolds combined with BMSCs can improve the neurological deficit of rats following TBI obviously, and also inhabit the glial scar’s formation in the brain damage zone, and can make BMSCs survive, proliferate, and differentiate into nerve cells in the brain damage zone.

    Release date:2018-05-30 04:28 Export PDF Favorites Scan
  • TREATMENT OF EARLY AVASCULAR NECROSIS OF FEMORAL HEAD BY CORE DECOMPRESSION COMBINED WITH AUTOLOGOUS BONE MARROW MESENCHYMAL STEM CELLS TRANSPLANTATION

    Objective To compare the cl inical outcomes of the core decompression combined with autologous bone marrow mesenchymal stem cells (BMSCs) transplantation with the isolated core decompression for the treatment of earlyavascular necrosis of the femoral head (ANFH). Methods From May 2006 to October 2008, 8 patients (16 hips) with earlyANFH were treated. There were 7 males and 1 female with an average age of 35.7 years (range, 19-43 years). According to the system of the Association Research Circulation Osseous (ARCO): 4 hips were classified as stage II a, 2 as stage II b, 1 as stage II c, and 1 as stage III a in group A; 2 hips were classified as stage II a, 2 as stage II b, 3 as stage II c, and 1 as stage III a in group B. The average disease course was 1.1 years (range, 4 months to 2 years). The patients were randomly divided into 2 groups according to left or right side: group A, only the core decompression was used; group B, both the core decompression and autologous BMSCs transplantation were used. The Harris score and visual analogue scale (VAS) score were determined, imaging evaluation was carried out by X-rays and MRI pre- and post-operatively. The erythrocyte sedimentation rate, C-reactive protein, l iver function, renal function, and immunoglobul in were detected for safety evaluation. Results All incisions healed by first intention. Eight patients were followed up 12-42 months (23.5 months on average). The cl inical symptoms of pain and claudication were gradually improved. The Harris scores and VAS scores of all patients were increased significantly at 3, 6, and 12 months after operation (P lt; 0.05). There was no significant difference between groups A and B 3 and 6 months after operation (P gt; 0.05), but there was significant difference between groups A and B 12 months after operation (P lt; 0.05). The necrosis area of femoral head in groups A and B were 18.13% ± 2.59% and 13.25% ± 2.12%, respectively, showing significant difference (P lt; 0.05). In group A, femoral head collapsed 12 months after operation in 1 case of stage III. No compl ication of fever, local infectionoccurred. Conclusion The core decompression and the core decompression combined with BMSCs transplantation are both effective for the treatment of early ANFH. The core decompression combined with BMSCs transplantation is better than core decompression in the rel ief of pain and postponing head collapse.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • Comprehensive Evaluation of Biological Activity in Different Passage Populations of Mesenchymal Stem Cells Derived from Bone Marrow in Ovariectomy Osteoporotic Rats

    This study aimed to comprehensively evaluate the biological activity in different passage populations of mesenchymal stem cells (BMSCs) derived from bone marrow in ovariectomy osteoporotic rats (named OVX-rBMSCs), providing experimental basis for new osteoporotic drug development and research. OVX-rBMSCs were isolated and cultured in vitro by the whole bone marrow adherent screening method. The morphological observation, cell surface markers (CD29, CD45, CD90) detection, cell proliferation, induced differentiation experimental detection were performed to evaluate the biological activity of Passage 1, 2, 3, 4 populations (P1, P2, P3, P4) OVX-rBMSCs. The results showed that whole bone marrow adherent culture method isolated and differentially subcultured OVX-The morphology of P4 OVX-rBMSCs was identical fibroblast-like and had the characteristics of ultrastructure of stem cells. The CD29 positive cells rate, CD90 positive cells rate, cell proliferation index, and the osteogenic, adipogenic, chondrogenic differentiation capacities of P4 OVX-rBMSCs were significantly better than those of other populations (P < 0.05). OVX-rBMSCs purity and biological activity were gradually optimized with the passaged, and among them P4 cells were superior to all the other populations. Based on these results, we report that the P4 OVX-rBMSCs model developed in this study can be used to develop a new and effective medical method for osteoporotic drug screening.

    Release date:2016-10-24 01:24 Export PDF Favorites Scan
  • Effect of micro RNA-335-5p regulating bone morphogenetic protein 2 on osteogenic differentiation of human bone marrow mesenchymal stem cells

    ObjectiveTo investigate the effect of micro RNA (miR)-335-5p regulating bone morphogenetic protein 2 (BMP-2) on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodshBMSCs were cultured in vitro and randomly divided into control group (group A), miR-335-5p mimics group (group B), miR-335-5p mimics negative control group (group C), miR-335-5p inhibitor group (group D), and miR-335-5p inhibitor negative control group (group E). After grouping treatment and induction of osteogenic differentiation, the osteogenic differentiation of cells in each group was detected by alkaline phosphatase (ALP) and alizarin red staining; the expressions of miR-335-5p and BMP-2, Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) mRNAs were detected by real-time fluorescence quantitative PCR analysis; the expressions of Runx2, OPN, OCN, and BMP-2 proteins were detected by Western blot.ResultsCompared with group A, the relative proportion of ALP positive cells and the relative content of mineralized nodules, the relative expressions of BMP-2, miR-335-5p, OPN, OCN, Runx2 mRNAs, the relative expressions of Runx2, OPN, OCN, and BMP-2 proteins in group B were significantly increased (P<0.05); the above indexes in group D were significantly decreased (P<0.05); the above indexes between groups C, E and group A were not significantly different (P>0.05).ConclusionmiR-335-5p can up-regulate BMP-2 expression and promote osteogenic differentiation of hBMSCs.

    Release date:2020-07-07 07:58 Export PDF Favorites Scan
  • Experimental study on the effect of desferrioxamine on targeted homing and angiogenesis of bone marrow mesenchymal stem cells

    ObjectiveTo investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats.MethodsBMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×106 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×106 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues.ResultsThe necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation (P<0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation.ConclusionDFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
  • Construction of neural tissue engineering scaffold by gelatinous collagen

    Objective To investigate the biocompatibility of type I collagen scaffold with rat bone marrow mesenchymal stem cell (BMSCs) and its role on proliferation and differentiation of BMSCs so as to explore the feasibility of collagen scaffold as neural tissue engineering scaffold. Methods Type I collagen was used fabricate collagen scaffold. BMSCs were isolated by density gradient centrifugation. The 5th passage cells were used to prepare the collagen scaffold-BMSCs complex. The morphology of collagen scaffold and BMSCs was observed by scanning electron microscope (SEM) and HE staining. The cell proliferation was measured by MTT assay at 1, 3, 5, and 7 days after culturein vitro. After cultured on collagen scaffold for 24 hours, the growth and adhesion of green fluorescent protein positive (GFP+) BMSCs were observed by confocal microscopy and live cell imaging. Results The confocal microscopy and live cell imaging results showed that GFP+ BMSCs uniformly distributed in the collagen scaffold; cells were fusiform shaped, and cell process or junctions between the cells formed in some cells, indicating good cell growth in the collagen scaffold. Collagen scoffold had porous fiber structure under SEM; BMSCs could adhered to the scaffold, with good cell morphology. The absorbance (A) value of BMSCs on collagen scaffold at 5 and 7 days after culture was significantly higher than that of purely-cultured BMSCs (t=4.472,P=0.011;t=4.819,P=0.009). HE staining showed that collagen scaffold presented a homogeneous, light-pink filament like structure under light microscope. BMSCs on the collagen scaffold distributed uniformly at 24 hours; cell displayed various forms, and some cells extended multiple processes at 7 days, showing neuron-like cell morphology. Conclusion Gelatinous collagen scaffold is easy to prepare and has superior biocompatibility. It is a promising scaffold for neural tissue engineering.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Role of R-spondin 2 on osteogenic differentiation of bone marrow mesenchymal stem cells and bone metabolism in ovariectomized mice

    Objective To investigate the effects of R-spondin 2 (Rspo2) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and bone mineral content in ovariectomized mice. Methods BMSCs were extracted from the bone marrow of the long bones of 7 4-week-old female C57BL/6 mice using whole bone marrow culture and passaged. After the cell phenotype was identified by flow cytometry, the 3rd generation cells were co-cultured with 10, 20, 40, 80, and 100 nmol/L Rspo2. Then, the cell activity and proliferative capacity were determined by cell counting kit 8 (CCK-8), and the intervention concentration of Rspo2 was screened for the subsequent experiments. The osteogenic differentiation ability of BMSCs was detected by alkaline phosphatase (ALP) staining, and the mRNA levels of osteogenesis-related genes [RUNX family transcription factor 2 (Runx2), collagen type Ⅰ alpha 1 (Col1), osteocalcin (OCN)] were detected by real-time fluorescence quantitative PCR (RT-qPCR). In addition, 18 10-week-old female C57BL/6 mice were randomly divided into sham operation group (sham group), ovariectomy group (OVX group), and OVX+Rspo2-intervention group (OVX+Rspo2 group), with 6 mice in each group. The sham group only underwent bilateral back incision and suturing, while the other two groups established osteoporosis mouse models by bilateral ovarian castration. Then, the mice were given a weekly intraperitoneal Rspo2 (1 mg/kg) treatment in OVX+Rspo2 group and saline at the same dosage in sham group and OVX group. After 12 weeks of treatment, the body mass and uterus mass of the mice were weighed in the 3 groups to assess whether the OVX model was successfully prepared; the tibia bones were stained with HE and immunohistochemistry staining to observe the changes in tibial bone mass and the expression level of Runx2 protein in the bone tissues. Blood was collected to detect the expressions of bone metabolism markers [ALP, OCN, type Ⅰ procollagen amino-terminal peptide (PINP)] and bone resorption marker [β-collagen degradation product (β-CTX)] by ELISA assay. Micro-CT was used to detect the bone microstructure changes in the tibia, and three-dimensional histomorphometric analyses were performed to analyze the trabeculae thickness (Tb.Th), trabeculae number (Tb.N), trabeculae separation (Tb.Sp), and bone volume fraction (BV/TV). Results CCK-8 assay showed that Rspo2 concentrations below 80 nmol/L were not cytotoxic (P>0.05), and the cell viability of 20 nmol/L Rspo2 group was significantly higher than that of the control group (P<0.05). Based on the above results, 10, 20, and 40 nmol/L Rspo2 were selected for subsequent experiments. ALP staining showed that the positive cell area of each concentration of Rspo2 group was significantly larger than that of the control group (P<0.05), with the highest showed in the 20 nmol/L Rspo2 group. The expression levels of the osteogenesis-related genes (Runx2, Col1, OCN) significantly increased, and the differences were significant between Rspo2 groups and control group (P<0.05) except for Runx2 in the 40 nmol/L Rspo2 group. In animal experiments, all groups of mice survived until the completion of the experiment, and the results of the body mass and uterus mass after 12 weeks of treatment showed that the OVX model was successfully prepared. Histological and immunohistochemical staining showed that the sparseness and connectivity of bone trabecula and the expression of Runx2 in the OVX group were lower than those in the sham group, whereas they were reversed in the OVX+Rspo2 group after treatment with Rspo2, and the differences were significant (P<0.05). ELISA assay showed that compared with the sham group, the serum bone metabolism markers in OVX group had an increase in ALP and a decrease in PINP (P<0.05). After Rspo2 intervention, PINP expression significantly reversed and increased, with significant differences compared to the sham group and OVX group (P<0.05). The bone resorption marker (β-CTX) was significantly higher in the OVX group than in the sham group (P<0.05), and it was significantly decreased in the OVX+Rspo2 group when compared with the OVX group (P<0.05). Compared with the sham group, Tb.Th, Tb.N, and BV/TV significantly decreased in the OVX group, while Tb.Sp significantly increased (P<0.05); after Rspo2 intervention, all of the above indexes significantly improved in the OVX+Rspo2 group (P<0.05) except Tb.Th. Conclusion Rspo2 promotes differentiation of BMSCs to osteoblasts, ameliorates osteoporosis due to estrogen deficiency, and promotes bone formation in mice.

    Release date:2024-12-13 10:50 Export PDF Favorites Scan
  • Construction of three-dimensional dermoid tissue based on cell sheets technology in vitro

    ObjectiveTo explore a new strategy for constructing three-dimensional dermoid tissue in vitro by using cell sheets technology.MethodsRabbit bone marrow mesenchymal stem cells (rBMSCs) were isolated from bone marrow of New Zealand white rabbits and cultured by whole bone marrow adherent method. Human dermal fibroblasts (HDFs) were cultured and passaged in vitro. The 2nd generation rBMSCs and the 3rd generation HDFs were cultured in a culture dish for 2 weeks with cell sheets conditioned medium respectively to obtain a monolayer cell sheets. Human umbilical vein endothelial cells (HUVECs) were inoculated on rBMSCs sheet to construct pre-vascularized cell sheet. During the culture period, the morphological changes of the cell sheet were observed under an inverted phase contrast microscope. At 1, 3, 7, and 14 days, HE staining and CD31 immunofluorescence staining were performed to observe the cell distribution and microvascular network formation. The rBMSCs sheet was used as control. The pre-vascularized cell sheet (experimental group) and rBMSCs sheet (control group) cultured for 7 days were placed in the middle of two HDFs sheets, respectively, to prepare three-dimensional dermoid tissues. After 24 hours of culture, CD31 immunofluorescence staining and collagen type Ⅰ and collagen type Ⅲ immunohistochemical stainings were performed to evaluate cell distribution and collagen expression.ResultsHDFs and rBMSCs sheets were successfully prepared after 2 weeks of cell culture. After inoculation of HUVECs on rBMSCs sheet for 3 days, HUVECs could be seen to rearrange on rBMSCs sheet and forming vacuoles. The reticular structure was visible at 7 days and more obvious at 14 days. The formation of vacuoles between the cell sheets was observed by HE staining, and the vacuoles became more and more obvious, the thickness of the membranes increased significantly with time. CD31 immunofluorescence staining showed the microvascular lumen formation. However, only the thickness of rBMSCs sheet increasing was observed, with no changes in cell morphology or cavitation structure. The three-dimensional dermoid tissue observation showed that the endothelial cells in the experimental group were positive expressions, and the rBMSCs, HDFs, and HUVECs cells were arranged neatly. The endothelial cells were negative expressions and randomly arranged in the control group. The collagen type Ⅰ and collagen type Ⅲ were positive expression in the experimental group and the control group. But compared with control group, experimental group presented a " honeycomb” network connection, where the matrix was distributed regularly, and cells were arranged tightly. The difference in the expression of collagen type Ⅰ and collagen type Ⅲ between the experimental group and the control group was not significant (P>0.05).ConclusionThree-dimensional dermoid tissue is successfully constructed by using cell sheet technology. The cell matrix distribution of the pre-vascularized cell sheet constructed by HUVECs and rBMSCs sheet is relatively regular, which has the potential to form tissue engineered dermis.

    Release date:2020-02-18 09:10 Export PDF Favorites Scan
  • HYPOXIA INDUCIBLE FACTOR 1α/2α GENES EXPRESSION IN CHONDROGENIC DIFFERENTIATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS

    ObjectiveTo observe the genes expression of hypoxia inducible factor 1α (HIF-1α) and HIF-2α by inducing chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) so as to provide a fundamental basis for HIF involving in the mechanism of chondrogenesis. MethodsHigh density pellet of hBMSCs was obtained by centrifugation and cultured with H-DMEM medium containing 2% fetal bovine serum (control group) and with chondrogenic medium (chondrogenic induction group) under hypoxia (2%O2) for 3 weeks. Immunohistochemistry staining was utilized to identify extracellular proteoglycan and collagen type Ⅱ at 3 weeks after culture. Western blot was applied for measuring HIF-1α and HIF-2α protein levels at 1 week after culture. Real-time quantitative PCR was performed to detect the genes expressions of HIF-1α, HIF-2α, Sox-9, collagen type Ⅱ, collagen type X, and Aggrecan at 1, 2, and 3 weeks after culture. ResultsToluidine blue staining showed sparse nucleus in the control group, and dense nucleus in the chondrogenic induction group;extracellular matrix staining was deeper in the chondrogenic induction group than the control group. Immunohistochemical staining for collagen type Ⅱ was positive in cytoplasm;when compared with the chondrogenic induction group, the control group showed sparse and light-coloured nucleus. At 1 week after culture, the protein expression levels of HIF-1α and HIF-2α in the chondrogenic induction group were significantly lower than those in the control group (t=8.345, P=0.001;t=7.683, P=0.002). When compared with control group, the HIF-1α mRNA expression was significantly down-regulated at 1 week and significantly up-regulated at 2 weeks in chondrogenic induction group (P<0.05), but no significant difference was found at 3 weeks between the 2 groups (P>0.05). And the mRNA expression of HIF-2α was significantly down-regulated and mRNA expression of Sox-9 was significantly up-regulated after chondrogenic differentiation when compared with the control group (P<0.01). The mRNA expressions of collagen type Ⅱ and collagen type X were significantly up-regulated at 2 and 3 weeks after chondrogenic differentiation when compared with the control group (P<0.05). And the mRNA expression of Aggrecan was significantly up-regulated at each time point after chondrogenic differentiation (P<0.05). ConclusionHIF-1α may involve the hBMSCs chondrogenic differentiation under hypoxia, while HIF-2α expression is depressed throughout the period and may have negative effect on differentiation.

    Release date: Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content