west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone marrow mesenchymal stem cells" 38 results
  • Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells

    ObjectiveTo prepare dopamine modified and cartilage derived morphogenetic protein 1 (CDMP1) laden polycaprolactone-hydroxyapatite (PCL-HA) composite scaffolds by three-dimensional (3D) printing and evaluate the effect of 3D scaffolds on in vitro chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodsA dimensional porous PCL-HA scaffold was fabricated by 3D printing. Dopamine was used to modify the surface of PCL-HA and then CDMP-1 was loaded into scaffolds. The surface microstructure was observed by scanning electron microscope (SEM) and porosity and water static contact angle were also detected. The cytological experiment in vitro were randomly divided into 3 groups: group A (PCL-HA scaffolds), group B (dopamine modified PCL-HA scaffolds), and group C (dopamine modified and CDMP-1 laden PCL-HA scaffolds). The hBMSCs were seeded into three scaffolds, in chondrogenic culture conditions, the cell adhesive rate, the cell proliferation (MTT assay), and cell activity (Live-Dead staining) were analyzed; and the gene expressions of collagen type Ⅱ and Aggrecan were detected by real-time fluorescent quantitative PCR.ResultsThe scaffolds in 3 groups were all showed a cross-linked and pore interconnected with pore size of 400–500 μm, porosity of 56%, and fiber orientation of 0°/90°. For dopamine modification, the scaffolds in groups B and C were dark brown while in group A was white. Similarly, water static contact angle was from 76° of group A to 0° of groups B and C. After cultured for 24 hours, the cell adhesion rate of groups A, B, and C was 34.3%±3.5%, 48.3%±1.5%, and 57.4%±2.5% respectively, showing significant differences between groups (P<0.05). Live/Dead staining showed good cell activity of cells in 3 groups. MTT test showed that hBMSCs proliferated well in 3 groups and the absorbance (A) value was increased with time. The A value in group C was significantly higher than that in groups B and A, and in group B than in group A after cultured for 4, 7, 14, and 21 days, all showing significant differences (P<0.05). The mRNA relative expression of collagen type Ⅱ and Aggrecan increased gradually with time in 3 groups. The mRNA relative expression of collagen type Ⅱafter cultured for 7, 14, and 21 days, and the mRNA relative expression of Aggrecan after cultured for 14 and 21 days in group C were significantly higher than those in groups A and B, and in group B than in group A, all showing significant differences (P<0.05).ConclusionCo-culture of dopamine modified and CDMP1 laden PCL-HA scaffolds and hBMSCs in vitro can promote hBMSCs’ adhesion, proliferation, and chondrogenic differentiation.

    Release date:2018-02-07 03:21 Export PDF Favorites Scan
  • Role of R-spondin 2 on osteogenic differentiation of bone marrow mesenchymal stem cells and bone metabolism in ovariectomized mice

    Objective To investigate the effects of R-spondin 2 (Rspo2) on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and bone mineral content in ovariectomized mice. Methods BMSCs were extracted from the bone marrow of the long bones of 7 4-week-old female C57BL/6 mice using whole bone marrow culture and passaged. After the cell phenotype was identified by flow cytometry, the 3rd generation cells were co-cultured with 10, 20, 40, 80, and 100 nmol/L Rspo2. Then, the cell activity and proliferative capacity were determined by cell counting kit 8 (CCK-8), and the intervention concentration of Rspo2 was screened for the subsequent experiments. The osteogenic differentiation ability of BMSCs was detected by alkaline phosphatase (ALP) staining, and the mRNA levels of osteogenesis-related genes [RUNX family transcription factor 2 (Runx2), collagen type Ⅰ alpha 1 (Col1), osteocalcin (OCN)] were detected by real-time fluorescence quantitative PCR (RT-qPCR). In addition, 18 10-week-old female C57BL/6 mice were randomly divided into sham operation group (sham group), ovariectomy group (OVX group), and OVX+Rspo2-intervention group (OVX+Rspo2 group), with 6 mice in each group. The sham group only underwent bilateral back incision and suturing, while the other two groups established osteoporosis mouse models by bilateral ovarian castration. Then, the mice were given a weekly intraperitoneal Rspo2 (1 mg/kg) treatment in OVX+Rspo2 group and saline at the same dosage in sham group and OVX group. After 12 weeks of treatment, the body mass and uterus mass of the mice were weighed in the 3 groups to assess whether the OVX model was successfully prepared; the tibia bones were stained with HE and immunohistochemistry staining to observe the changes in tibial bone mass and the expression level of Runx2 protein in the bone tissues. Blood was collected to detect the expressions of bone metabolism markers [ALP, OCN, type Ⅰ procollagen amino-terminal peptide (PINP)] and bone resorption marker [β-collagen degradation product (β-CTX)] by ELISA assay. Micro-CT was used to detect the bone microstructure changes in the tibia, and three-dimensional histomorphometric analyses were performed to analyze the trabeculae thickness (Tb.Th), trabeculae number (Tb.N), trabeculae separation (Tb.Sp), and bone volume fraction (BV/TV). Results CCK-8 assay showed that Rspo2 concentrations below 80 nmol/L were not cytotoxic (P>0.05), and the cell viability of 20 nmol/L Rspo2 group was significantly higher than that of the control group (P<0.05). Based on the above results, 10, 20, and 40 nmol/L Rspo2 were selected for subsequent experiments. ALP staining showed that the positive cell area of each concentration of Rspo2 group was significantly larger than that of the control group (P<0.05), with the highest showed in the 20 nmol/L Rspo2 group. The expression levels of the osteogenesis-related genes (Runx2, Col1, OCN) significantly increased, and the differences were significant between Rspo2 groups and control group (P<0.05) except for Runx2 in the 40 nmol/L Rspo2 group. In animal experiments, all groups of mice survived until the completion of the experiment, and the results of the body mass and uterus mass after 12 weeks of treatment showed that the OVX model was successfully prepared. Histological and immunohistochemical staining showed that the sparseness and connectivity of bone trabecula and the expression of Runx2 in the OVX group were lower than those in the sham group, whereas they were reversed in the OVX+Rspo2 group after treatment with Rspo2, and the differences were significant (P<0.05). ELISA assay showed that compared with the sham group, the serum bone metabolism markers in OVX group had an increase in ALP and a decrease in PINP (P<0.05). After Rspo2 intervention, PINP expression significantly reversed and increased, with significant differences compared to the sham group and OVX group (P<0.05). The bone resorption marker (β-CTX) was significantly higher in the OVX group than in the sham group (P<0.05), and it was significantly decreased in the OVX+Rspo2 group when compared with the OVX group (P<0.05). Compared with the sham group, Tb.Th, Tb.N, and BV/TV significantly decreased in the OVX group, while Tb.Sp significantly increased (P<0.05); after Rspo2 intervention, all of the above indexes significantly improved in the OVX+Rspo2 group (P<0.05) except Tb.Th. Conclusion Rspo2 promotes differentiation of BMSCs to osteoblasts, ameliorates osteoporosis due to estrogen deficiency, and promotes bone formation in mice.

    Release date:2024-12-13 10:50 Export PDF Favorites Scan
  • Research on influence mechanism of G protein coupled receptor kinase interacting protein 1 on differentiation of bone marrow mesenchymal stem cells into endothelial cells

    ObjectiveTo investigate the mechanism of G protein coupled receptor kinase interacting protein 1 (GIT1) affecting angiogenesis by comparing the differentiation of bone marrow mesenchymal stem cells (BMSCs) differentiated into endothelial cells between GIT1 wild type mice and GIT1 gene knockout mice.MethodsMale and female GIT1 heterozygous mice were paired breeding, and the genotypic identification of newborn mice were detected by PCR. The 2nd generation BMSCs isolated from GIT1 wild type mice or GIT1 gene knockout mice were divided into 4 groups, including wild type control group (group A), wild type experimental group (group A1), GIT1 knockout control group (group B), and GIT1 knockout experimental group (group B1). The cells of groups A1 and B1 were cultured with the endothelial induction medium and the cells of groups A and B with normal cluture medium. The expressions of vascular endothelial growth factor receptor 2 (VEGFR-2), VEGFR-3, and phospho-VEGFR-2 (pVEGFR-2), and pVEGFR-3 proteins were detected by Western blot. The endothelial cell markers [von Willebrand factor (vWF), platelet-endothelial cell adhesion molecule 1 (PECAM-1), and vascular endothelial cadherin (VE-Cadherin)] were detected by flow cytometry. The 2nd generation BMSCs of GIT1 wild type mice were divided into 4 groups according to the different culture media: group Ⅰ, primary cell culture medium; group Ⅱ, cell culture medium containing SAR131675 (VEGFR-3 blocker); group Ⅲ, endothelial induction medium; group Ⅳ, endothelial induction medium containing SAR131675. The endothelial cell markers (vWF, PECAM-1, and VE-Cadherin) in 4 groups were also detected by flow cytometry.ResultsWestern blot results showed that there was no obviously difference in protein expressions of VEGFR-2 and pVEGFR-2 between groups; and the expressions of VEGFR-3 and pVEGFR-3 proteins in group A1 were obviously higher than those in groups A, B, and B1. The flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group A1 than in groups A, B, and B1 (P<0.05), and in group B1 than in groups A and B (P<0.05); but no significant difference was found between groups A and B (P>0.05). In the VEGFR-3 blocked experiment, the flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group Ⅲ than in groupsⅠ, Ⅱ, and Ⅳ, and in group Ⅳ than in groups Ⅰ and Ⅱ (P<0.05); but no significant difference was found between groups Ⅰ and Ⅱ (P>0.05).ConclusionGIT1 mediates BMSCs of mice differentiation into endothelial cells via VEGFR-3, thereby affecting the angiogenesis.

    Release date:2018-03-07 04:35 Export PDF Favorites Scan
  • Effect of lentivirus-mediated silencing of P75 neurotrophin receptor gene on osteogenic differentiation of bone marrow mesenchymal stem cells in rats

    ObjectiveTo investigate the effect of small interfering RNA (siRNA) lentivirus-mediated silencing of P75 neurotrophin receptor (P75NTR) gene on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in rats.MethodsThree lentivirus-mediated P75NTR gene siRNA sequences (P75NTR-siRNA-1, 2, 3) and negative control (NC)-siRNA were designed and transfected into the 3rd generation Sprague Dawley (SD) rat BMSCs. The cells morphological changes were observed under an inverted microscope, and the expressions of P75NTR gene and protein in cells were detected by real-time fluorescence quantitative PCR and Western blot. Then the best silencing P75NTR-siRNA for subsequent osteogenic differentiation experiments was screened out. The 3rd generation SD rat BMSCs were randomly divided into experimental group, negative control group, and blank control group (normal BMSCs). The BMSCs of negative control group and experimental group were transfected with NC-siRNA and the selected P75NTR-siRNA lentiviral vector, respectively. The cells of each group were cultured by osteogenic induction. The expressions of osteogenic related proteins [osteocalcin (OCN) and Runx related transcription factor 2 (Runx2)] were detected by Western blot; the collagen type Ⅰ expression was observed by immunohistochemical staining; the osteogenesis of BMSCs was observed by alkaline phosphatase (ALP) detection and alizarin red staining.ResultsAfter lentivirus-mediated P75NTR transfected into BMSCs, the expressions of P75NTR mRNA and protein significantly reduced (P<0.05), and the best silencing P75NTR-siRNA was P75NTR-siRNA-3. After P75NTR gene was silenced, MTT test showed that the cell proliferation in the experimental group was significantly faster than those in the two control groups (P<0.05). After osteogenic induction, the relative expressions of OCN and Runx2 proteins, collagen type Ⅰ expression, and ALP activity were significantly higher in the experimental group than in the two control groups, the differences were significant (P<0.05). With the prolongation of osteogenic induction, the mineralized nodules in the experimental group gradually increased.ConclusionSilencing the P75NTR gene with siRNA lentivirus can promote the osteogenic differentiation of rat BMSCs and provide a new idea for the treatment of bone defects.

    Release date:2020-08-19 03:53 Export PDF Favorites Scan
  • Experimental study on autologous injectable platelets rich fibrin combined with bone mesenchymal stem cells in treating sciatic nerve injury in rats

    ObjectiveTo investigate the effectiveness of autologous injectable platelet rich fibrin (i-PRF) combined with bone marrow mesenchymal stem cells (BMSCs) for sciatic nerve injury in rats.MethodsBMSCs were isolated and cultured from tibial bone marrow of Sprague Dawley (SD) neonatal rats aged 10-15 days and passaged to the 4th generation. i-PRF was prepared from posterior orbital venous blood of adult SD rats by improved low-speed centrifugation. Twenty-four adult SD rats were selected and randomly divided into 4 groups with 6 rats in each group after the sciatic nerve Ⅲ degree injury model was established by modified crush injury method. Groups A, B, C, and D were injected with BMSCs suspension+autologous i-PRF, autologous i-PRF, BMSCs suspension, and normal saline, respectively. The Basso-Beattie-Bresnahan (BBB) score was used to evaluate the recovery of neurological function of the affected limb of rats every week from 1 to 8 weeks after operation. At 2 months after operation, the rats were sacrificed and the histological changes of sciatic nerve were observed by HE staining. The microstructural changes of nerve fibers, myelin sheath, and nucleus were observed by transmission electron microscope. The expressions of N-cadherin, Nestin, and glial fibrillary acidic protein (GFAP) were detected by Western blot.ResultsNo immune rejection or death occurred in the rats after operation. There was no significant difference in BBB scores between groups at 1 week after operation (P>0.05); at 2-8 weeks after operation, BBB scores in group A were significantly higher than those in groups B, C, and D, and in groups B, C than in group D (P<0.05), there was no significant difference between groups B and C (P>0.05). HE staining showed that the nerve fibers in group A arranged in order, without defect or demyelination; the nerve fibers in group B were not clear and slightly swollen; some of the nerve fibers in group C were disordered and demyelinated; the nerve fibers in group D were not continuous, obviously demyelinated, and some of the nerve adventitia damaged. Transmission electron microscope showed that the structure of nerve fibers in group A was clear, myelin sheath was complete, and nucleus was dense; group B was slightly less than group A; group C had fuzzy structure, demyelination, and hollowing out; group D had disorder structure, demyelination, and hollowing out, and the middle part of nerve adventitia continuity. Western blot detection results showed that there was no significant difference in the relative expression of Nestin between groups (P>0.05). The relative expression of N-cadherin was significantly lower in groups B, C, and D than in group A, in groups C and D than in group B, and in group D than in group C (P<0.05). The relative expression of GFAP was significantly lower in groups B, C, and D than in group A, in group D than in groups B and C (P<0.05); there was no significant difference between groups B and C (P>0.05).ConclusionAutologous i-PRF combined with BMSCs can effectively treat sciatic nerve tissue injury in rats.

    Release date:2020-06-15 02:43 Export PDF Favorites Scan
  • Effect of micro RNA-335-5p regulating bone morphogenetic protein 2 on osteogenic differentiation of human bone marrow mesenchymal stem cells

    ObjectiveTo investigate the effect of micro RNA (miR)-335-5p regulating bone morphogenetic protein 2 (BMP-2) on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).MethodshBMSCs were cultured in vitro and randomly divided into control group (group A), miR-335-5p mimics group (group B), miR-335-5p mimics negative control group (group C), miR-335-5p inhibitor group (group D), and miR-335-5p inhibitor negative control group (group E). After grouping treatment and induction of osteogenic differentiation, the osteogenic differentiation of cells in each group was detected by alkaline phosphatase (ALP) and alizarin red staining; the expressions of miR-335-5p and BMP-2, Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin (OCN) mRNAs were detected by real-time fluorescence quantitative PCR analysis; the expressions of Runx2, OPN, OCN, and BMP-2 proteins were detected by Western blot.ResultsCompared with group A, the relative proportion of ALP positive cells and the relative content of mineralized nodules, the relative expressions of BMP-2, miR-335-5p, OPN, OCN, Runx2 mRNAs, the relative expressions of Runx2, OPN, OCN, and BMP-2 proteins in group B were significantly increased (P<0.05); the above indexes in group D were significantly decreased (P<0.05); the above indexes between groups C, E and group A were not significantly different (P>0.05).ConclusionmiR-335-5p can up-regulate BMP-2 expression and promote osteogenic differentiation of hBMSCs.

    Release date:2020-07-07 07:58 Export PDF Favorites Scan
  • Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β1 to promote the repair of skull defects

    ObjectiveTo prepare a bone tissue engineering scaffold for repairing the skull defect of Sprague Dawley (SD) rats by combining exogenous transforming growth factor β1 (TGF-β1) with gelatin methacryloyl (GelMA) hydrogel.MethodsFirstly, GelMA hydrogel composite scaffolds containing exogenous TGF-β1 at concentrations of 0, 150, 300, 600, 900, and 1 200 ng/mL (set to groups A, B, C, D, E, and F, respectively) were prepared. Cell counting kit 8 (CCK-8) method was used to detect the effect of composite scaffold on the proliferation of bone marrow mesenchymal stem cells (BMSCs) in SD rats. ALP staining, alizarin red staining, osteocalcin (OCN) immunofluorescence staining, and Western blot were used to explore the effect of scaffolds on osteogenic differentiation of BMSCs, and the optimal concentration of TGF-β1/GelMA scaffold was selected. Thirty-six 8-week-old SD rats were taken to prepare a 5 mm diameter skull bone defect model and randomly divided into 3 groups, namely the control group, the GelMA group, and the GelMA+TGF-β1 group (using the optimal concentration of TGF-β1/GelMA scaffold). The rats were sacrificed at 4 and 8 weeks after operation, and micro-CT, HE staining, and OCN immunohistochemistry staining were performed to observe the repair effect of skull defects.ResultsThe CCK-8 method showed that the TGF-β1/GelMA scaffolds in each group had a promoting effect on the proliferation of BMSCs. Group D had the strongest effect, and the cell activity was significantly higher than that of the other groups (P<0.05). The results of ALP staining, alizarin red staining, OCN immunofluorescence staining, and Western blot showed that the percentage of ALP positive area, the percentage of alizarin red positive area, and the relative expressions of ALP and OCN proteins in group D were significantly higher than those of the other groups (P<0.05), the osteogenesis effect in group D was the strongest. Therefore, in vitro experiments screened out the optimal concentration of TGF-β1/GelMA scaffold to be 600 ng/mL. Micro-CT, HE staining, and OCN immunohistochemistry staining of rat skull defect repair experiments showed that the new bone tissue and bone volume/tissue volume ratio in the TGF-β1+GelMA group were significantly higher than those in the GelMA group and control group at 4 and 8 weeks after operation (P<0.05).ConclusionThe TGF-β1/GelMA scaffold with a concentration of 600 ng/mL can significantly promote the osteogenic differentiation of BMSCs, can significantly promote bone regeneration at the skull defect, and can be used as a bioactive material for bone tissue regeneration.

    Release date:2021-07-29 05:02 Export PDF Favorites Scan
  • The role of glutathione in steroid induced bone marrow mesenchymal stem cells dysfunction

    Objective To investigate the protective effect of the antioxidant glutathione (GSH) on the steroid-induced imbalance between osteogenesis and adipogenesis in human bone marrow mesenchymal stem cells (BMSCs). Methods The BMSCs were isolated from the proximal femur bone marrow from 3 patients of femoral neck fracture and were separated, cultured, and purificated by density gradient centrifugation and adherent wall methodin vitro. The third generation BMSCs were divided into 5 groups: group A, BMSCs (1×105 cells/mL); group B, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone; group C, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone+5 μmol/L GSH; group D, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone+10 μmol/L GSH; group E, BMSCs (1×105 cells/mL)+10 μmol/L dexamethasone+50 μmol/L GSH. After cultured for 7 days, the reactive oxygen species expression was detected by flow cytometry; the superoxide dismutase (SOD) and Catalase mRNA expressions were determined by RT-PCR; the peroxisome proliferator-activated receptors γ (PPAR-γ), CCAAT/enhancer-binding family of proteins (C/EBP), Runx2, and alkaline phosphatase (ALP) mRNA expressions were evaluated by real-time fluorescence quantitative PCR. After cultured for 21 days, Oil red O staining was used to observe the adipogenesis differentiation of cells, and the expressions of related proteins were detected by Western blot. Results The reactive oxygen species expression in group B was obviously higher than in the other groups, in group C than in groups A, D, and E, and in groups D, E than in group A, all showing significant differences between groups (P<0.05); but there was no significant difference between groups D and E (P>0.05). The oil red O staining positive cells in group B were obviously more than the other groups, and groups C, D, E, and A decreased sequentially, the absorbance (A) values had significant differences between groups (P<0.05). RT-PCR detection showed that the relative expressions of SOD and Catalase mRNA in group B were significantly lower than those in the other groups, while in group C than in groups A, D, and E (P<0.05), but there was no significant difference among groups A, D, and E (P>0.05). Real-time fluorescence quantitative PCR detection showed that the relative expressions of PPAR-γ and C/EBP mRNA in group B were significantly higher than those in the other groups, while in group C than in groups A, D, and E, and in groups D, E than in group A (P<0.05); but there was no significant difference between groups D and E (P>0.05). The relative expressions of Runx2 and ALP mRNA in group B were significantly lower than those in the other groups, while in group C than in groups A, D, and E, and in groups D, E than in group A (P<0.05); but there was no significant difference between groups D and E (P>0.05). Western blot detection showed that the relative expression of PPAR-γ and C/EBP protein in group B was significantly higher than those in the other groups, and groups C, D, E, and A decreased sequentially, all showing significant differences between groups (P<0.05). The relative expression of Runx2 and ALP protein in group B was significantly lower than those in the other groups, and groups C, D, E, and A increased sequentially, all showing significant differences between groups (P<0.05). Conclusions GSH can inhibit the adipogenesis differentiation and enhance the osteogenic differentiation of human BMSCs by reducing the intracellular reactive oxygen species level; and in a certain range, the higher the concentration of GSH, the more obvious the effect is.

    Release date:2018-01-09 11:23 Export PDF Favorites Scan
  • Effects of nicotinamide mononucleotide adenylyl transferase 3 on mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells via regulating nicotinamide adenine dinucleotide levels

    ObjectiveTo investigate the effect of nicotinamide mononucleotide adenosyl transferase 3 (NMNAT3) on the mitochondrial function and anti-oxidative stress of rabbit bone marrow mesenchymal stem cells (BMSCs) under oxidative stress in vitro by regulating nicotinamide adenine dinucleotide (NAD+) levels.MethodsThe bone marrow of femur and tibia of New Zealand white rabbits were extracted. BMSCs were isolated and cultured in vitro by density gradient centrifugation combined with adherent culture. The third generation cells were identified by flow cytometry and multi-directional induction. Overexpression of NMNAT3 gene was transfected into rabbit BMSCs by enhanced green fluorescent protein (EGFP) labeled lentivirus (BMSCs/Lv-NMNAT3-EGFP), and then the expression of NMNAT3 was detected by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot and cell proliferation by cell counting kit 8 (CCK-8) method. BMSCs transfected with negative lentivirus (BMSCs/Lv-EGFP) and untransfected BMSCs were used as controls. The oxidative stress injury cell model was established by using H2O2 to treat rabbit BMSCs. According to the experimental treatment conditions, they were divided into 4 groups: Group A was normal BMSCs without H2O2 treatment; untransfected BMSCs, BMSCs/Lv-EGFP, and BMSCs/Lv-NMNAT3-EGFP in groups B, C, and D were treated with H2O2 simulated oxidative stress, respectively. The effects of NMNAT3 on the mitochondrial function of BMSCs under oxidative stress [changes of mitochondrial membrane potential, NAD+ and adenosine triphosphate (ATP) levels], the changes of anti-oxidative stress ability of BMSCs [reactive oxygen species (ROS) and malondialdehyde (MDA) levels, manganese superoxide dismutase (Mn-SOD) and catalase (CAT) activities], and the effects of BMSCs on senescence and apoptosis [senescence associated-β-galactosidase (SA-β-gal) staining and TUNEL staining] were detected after 24 hours of treatment.ResultsThe rabbit BMSCs were successfully isolated and cultured in vitro. The stable strain of rabbit BMSCs with high expression of NMNAT3 gene was successfully obtained by lentiviral transfection, and the expressions of NMNAT3 gene and protein significantly increased (P<0.05). There was no significant difference in the trend of cell proliferation compared with normal BMSCs. After treatment with H2O2, the function of mitochondria was damaged and apoptosis increased in all groups. However, compared with groups B and C, the group D showed that the mitochondrial function of BMSCs improved, the membrane potential increased, the level of NAD+ and ATP synthesis of mitochondria increased; the anti-oxidative stress ability of BMSCs enhanced, the levels of ROS and MDA decreased, and the activities of antioxidant enzymes (Mn-SOD, CAT) increased; and the proportion of SA-β-gal positive cells and the rate of apoptosis decreased. The differences in all indicators between group D and groups B and C were significant (P<0.05).ConclusionNMNAT3 can effectively improve the mitochondrial function of rabbit BMSCs via increasing the NAD+ levels, and enhance its anti-oxidative stress and improve the survival of BMSCs under oxidative stress conditions.

    Release date:2020-06-15 02:43 Export PDF Favorites Scan
  • Experimental study on the effect of desferrioxamine on targeted homing and angiogenesis of bone marrow mesenchymal stem cells

    ObjectiveTo investigate whether desferrioxamine (DFO) can enhance the homing of bone marrow mesenchymal stem cells (BMSCs) and improve neovascularization in random flaps of rats.MethodsBMSCs and fibroblasts (FB) of luciferase transgenic Lewis rats were isolated and cultured. Forty 4-week-old Lewis male rats were used to form a 10 cm×3 cm rectangular flap on their back. The experimental animals were randomly divided into 4 groups with 10 rats in each group: in group A, 200 μL PBS were injected through retrobulbar venous plexus; in group B, 200 μL FB with a concentration of 1×106 cells/mL were injected; in group C, 200 μL BMSCs with a concentration of 1×106 cells/mL were injected; in group D, cells transplantation was the same as that in group C, after cells transplantation, DFO [100 mg/(kg·d)] were injected intraperitoneally for 7 days. On the 7th day after operation, the survival rate of flaps in each group was observed and calculated; the blood perfusion was observed by laser speckle imaging. Bioluminescence imaging was used to detect the distribution of transplanted cells in rats at 30 minutes and 1, 4, 7, and 14 days after operation. Immunofluorescence staining was performed at 7 days after operation to observe CD31 staining and count capillary density under 200-fold visual field and to detect the expressions of stromal cell derived factor 1 (SDF-1), epidermal growth factor (EGF), fibroblast growth factor (FGF), and Ki67. Transplanted BMSCs were labeled with luciferase antibody and observed by immunofluorescence staining whether they participated in the repair of injured tissues.ResultsThe necrosis boundary of ischemic flaps in each group was clear at 7 days after operation. The survival rate of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Laser speckle imaging showed that the blood perfusion units of flaps in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). Bioluminescence imaging showed that BMSCs gradually migrated to the ischemia and hypoxia area and eventually distributed to the ischemic tissues. The photon signal of group D was significantly stronger than that of other groups at 14 days after operation (P<0.05). CD31 immunofluorescence staining showed that capillary density in groups C and D was significantly higher than that in groups A and B, and in group D than in group C (P<0.05). The expressions of SDF-1, EGF, FGF, and Ki67 in groups C and D were significantly stronger than those in groups A and B, and in group D than in group C. Luciferase-labeled BMSCs were expressed in the elastic layer of arteries, capillaries, and hair follicles at 7 days after transplantation.ConclusionDFO can enhance the migration and homing of BMSCs to the hypoxic area of random flap, accelerate the differentiation of BMSCs in ischemic tissue, and improve the neovascularization of ischemic tissue.

    Release date:2019-01-03 04:07 Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content