west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone repair" 24 results
  • Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries

    Objective To review the research progress of in-situ three dimensional (3D) bio-printing technology in the repair of bone and cartilage injuries. Methods Literature on the application of in-situ 3D bio-printing technology to repair bone and cartilage injuries at home and abroad in recent years was reviewed, analyzed, and summarized. Results As a new tissue engineering technology, in-situ 3D bio-printing technology is mainly applied to repair bone, cartilage, and skin tissue injuries. By combining biomaterials, bioactive substances, and cells, tissue is printed directly at the site of injury or defect. At present, the research on the technology mainly focuses on printing mode, bio-ink, and printing technology; the application research in the field of bone and cartilage mainly focuses on pre-vascularization, adjusting the composition of bio-ink, improving scaffold structure, printing technology, loading drugs, cells, and bioactive factors, so as to promote tissue injury repair. Conclusion Multiple animal experiments have confirmed that in-situ 3D bio-printing technology can construct bone and cartilage tissue grafts in a real-time, rapid, and minimally invasive manner. In the future, it is necessary to continue to develop bio-inks suitable for specific tissue grafts, as well as combine with robotics, fusion imaging, and computer-aided medicine to improve printing efficiency.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • DEVELOPMENT OF INJECTABLE BONE REPAIR BIOMATERIALS

    Objective To introduce the basic research and cl inical appl ication of the injectable bone repair biomaterials. Methods The recent original articles about the injectable bone repair biomaterials were extensively reviewed. Results The injectable bone repair biomaterials could fill irregularly shaped defects and might allow bone augmentation, both with minimal surgical intervention, and the injectable bone repair material had a good prospect by the medical profession and attach great importance to the academic material, but there were some deficiencies and shortcomings. Conclusion The injectable bone repair biomaterials may be a future approach to repair bone defect.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
  • Hydrogel-based vascularization strategy in the field of bone tissue engineering

    Bone tissue regeneration and blood vessel formation are inseparable. How to realize the vascularization of bone repair scaffolds is an urgent problem in bone tissue engineering. The growth and development, mineralization maturity, reconstruction and remodeling, and tissue regeneration of bone are all based on forming an excellent vascularization network. In recent years, more and more researchers have used hydrogels to carry different cells, cytokines, metal ions and small molecules for in vitro vascularization and application in bone regeneration. Based on this background, this article reviews the hydrogel-based vascularization strategies in bone tissue engineering.

    Release date:2023-04-24 08:49 Export PDF Favorites Scan
  • Application and research status of bioactive glass in bone repair

    ObjectiveTo summarize the clinical application and research status of bioactive glass (BAG) in bone repair.MethodsThe recently published literature concerning BAG in bone repair at home and abroad was reviewed and summarized.ResultsBAG has been widely used in clinical bone repair with a favorable effectiveness. In the experimental aspect, to meet different clinical application needs, BAG has been prepared in different forms, such as particles, prosthetic coating, drug and biological factor delivery system, bone cement, and scaffold. And the significant progress has been made.ConclusionBAG has been well studied in the field of bone repair due to its excellent bone repair performance, and it is expected to become a new generation of bone repair material.

    Release date:2020-06-15 02:43 Export PDF Favorites Scan
  • Repair of segmental bone defects in rabbits’ radius with domestic porous tantalum encapsulated with pedicled fascial flap

    Objective To investigate the effect of domestic porous tantalum encapsulated with pedicled fascial flap on repairing of segmental bone defect in rabbits’ radius. Methods A total of 60 New Zealand white rabbits (aged 6- 8 months and weighing 2.5-3.0 kg) were randomly divided into the experimental group and control group (30 rabbits each group). A 1.5 cm segmental bone defect in right radius was established as the animal model. The porous tantalums encapsulated with pedicled fascial flaps (30 mm×20 mm) were implanted in the created bone defect in the experimental group, and the porous tantalums were only implanted in the control group. X-ray films were observed at the day after operation and at 4, 8, and 16 weeks after operation. Specimens were taken out at 4, 8, and 16 weeks after operation for HE staining and toluidine blue staining observation. The maximum load force and bending strength were detected by three point bending biomechanical test, and the Micro-CT analysis and quantitative analysis of the new bone volume fraction (BV/TV) were performed at 16 weeks after operation to compare the bone defect repair abilityin vivo in 2 groups. Results All incisions healed by first intention without wound infection. At 4, 8, and 16 weeks after operation, the X-ray films showed that the implants were well maintained without apparent displacement. As followed with time, the combination between the implants and host bone became more and more closely, and the fracture line gradually disappeared. HE staining and toluidine blue staining showed that new bone mass and maturity gradually increased at the interface and inside materials in 2 groups, and the new bone gradually growed from the interface to internal pore. At 16 weeks after operation, the three point bending biomechanical test showed that the maximum load force and bending strength in the experimental were (96.54±7.21) N and (91.26±1.76) MPa respectively, showing significant differences when compared with the control group [(82.65±5.65) N and (78.53±1.16) MPa respectively] (t=3.715, P=0.004; t=14.801, P=0.000). And Micro-CT analysis exhibited that there were a large amount of new bone at the interface and the surface of implant materials and inside the materials. The new bone BV/TV in the experimental group (32.63%±3.56%) was significantly higher than that in control group (25.07%±4.34%) (t=3.299, P=0.008). Conclusion Domestic porous tantalum encapsulated with pedicled fascial flap can increase local blood supply, strengthen material bone conduction ability, and promote the segmental bone defect repair.

    Release date:2017-10-10 03:58 Export PDF Favorites Scan
  • Research and application progress of bioactive glass in bone repair

    Objective To review the research and application progress of bioactive glass in bone repair. Methods The recently published literature concerning bioactive glass in bone repair was reviewed and summarized. Results Bioactive glass can classified different types, such as bioactive glass particulate, bioactive glass scaffold, bioactive glass coating, injectable bioactive glass cement, and bioactive glass delivery system. Bioactive glass has been well studied in the field of bone repair due to its excellent biological properties. Also, the remarkable progress has been made in various aspects. Conclusion Bioactive glass is a reliable material of bone repair and will play an even more important role in the future.

    Release date:2017-12-11 12:15 Export PDF Favorites Scan
  • Osteoimmunomodulatory effects of inorganic biomaterials in the process of bone repair

    Objective To review the osteoimmunomodulatory effects and related mechanisms of inorganic biomaterials in the process of bone repair. Methods A wide range of relevant domestic and foreign literature was reviewed, the characteristics of various inorganic biomaterials in the process of bone repair were summarized, and the osteoimmunomodulatory mechanism in the process of bone repair was discussed. Results Immune cells play a very important role in the dynamic balance of bone tissue. Inorganic biomaterials can directly regulate the immune cells in the body by changing their surface roughness, surface wettability, and other physical and chemical properties, constructing a suitable immune microenvironment, and then realizing dynamic regulation of bone repair. Conclusion Inorganic biomaterials are a class of biomaterials that are widely used in bone repair. Fully understanding the role of inorganic biomaterials in immunomodulation during bone repair will help to design novel bone immunomodulatory scaffolds for bone repair.

    Release date:2022-05-07 02:02 Export PDF Favorites Scan
  • Application and research progress of 3D printing magnesium-based biological scaffolds in the field of bone regeneration

    In recent years, 3D printing technology, as a new material processing technology, can precisely control the macroscopic and microstructure of biological scaffolds and has advantages that traditional manufacturing methods cannot match in the manufacture of complex bone repair scaffolds. Magnesium ion is one of the important trace elements of the human body. It participates in many physiological activities of the body and plays a very important role in maintaining the normal physiological function of the organism. In addition, magnesium ions also have the characteristics of promoting the secretion of osteogenic proteins by osteoblasts and osteogenic differentiation of mesenchymal stem cells. By combining with 3D printing technology, more and more personalized magnesium-based biological scaffolds have been produced and used in bone regeneration research in vivo and in vitro. Therefore, this article reviews the application and research progress of 3D printing magnesium-based biomaterials in the field of bone regeneration and repair.

    Release date:2023-05-23 03:05 Export PDF Favorites Scan
  • Stem cells sheets for bone and cartilage repair

    Cell sheet technology refers to the preparation of cells into thin sheets, which retains a large amount of extracellular matrix, cell-cell junctions, and has a wide range of applications in the repair and regeneration of osteochondral tissues. This paper discusses the types, properties, and construction methods of stem cell sheets, and reviews the current research status of vascularization of stem cell sheets and their composite application with various cytokines and scaffolding materials for bone and cartilage repair, with the aim of exploring the direction of the further development of stem cell sheets in the field of bone and cartilage.

    Release date:2023-10-24 03:04 Export PDF Favorites Scan
  • Application and research progress of biological scaffolds in the treatment of infectious bone defects

    Infectious bone defects are usually caused by trauma, surgical infections, or chronic osteomyelitis, and represent a complex and intractable clinical challenge in the field of orthopaedics. Biological scaffolds can achieve synergistic repair of defects by loading antibiotics for controlled release to inhibit bacteria, providing support for cell proliferation and differentiation to promote bone regeneration, and carrying factors or stem cells to enhance vascularization. They possess incomparable advantages over traditional treatment methods in the management of infectious bone defects, and the selection of appropriate biological scaffolds in clinical practice needs to be tailored to the type of defect and the severity of infection. Therefore, this article elaborates on the application and research progress of biological scaffolds in the treatment of infectious bone defects.

    Release date:2025-09-26 04:04 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content