west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "bone repair" 23 results
  • Novel nano-hydroxyapatite/polyurethane composite scaffold in the treatment of chronic osteomyelitis

    ObjectiveTo evaluate the bone repair efficacy of the new nano-hydroxyapatite (n-HA)/polyurethane (PU) composite scaffold in the treatment of chronic osteomyelitis in tibia.MethodsA novel levofloxacin@mesoporous silica microspheres (Lev@MSNs)/n-HA/PU was successfully synthesized. Its surface structure was observed by scanning electron microscopy (SEM). Fifty adult female New Zealand rabbits were randomly selected, and osteomyelitis was induced in the right tibia of the rabbit by injecting bacterial suspension (Staphylococcus aureus; 3×107 CFU/mL), which of the method was described by Norden. A total of 45 animals with the evidence of osteomyelitis were randomly divided into 4 groups, and the right medullary cavity of each animal was exposed. Animals in the blank control group (group A, n=9) were treated with exhaustive debridement only. The remaining animals were first treated by exhaustive debridement, and received implantations of 5 mg Lev@PMMA (group B, n=12), 1 mg Lev@MSNs/n-HA/PU (group C, n=12), and 5 mg Lev@MSNs/n-HA/PU (group D, n=12), respectively. At 12 weeks postoperatively, the right tibia of rabbits were observed by X-ray film, and then gross observation, methylene blue/acid fuchsin staining, and SEM observation of implant-bone interface, as well as biomechanical test (measuring the maximal compression force) were performed.ResultsX-ray films showed that the infection were severer than those of preoperation in group A, while the control of inflammation and bone healing of rabbits in group D were obviously better than those at preoperation. The gross observation showed extensive bone destruction in group A, a significant gap between bone tissue and the material in groups B and C, and close combination between bone tissue and the material in group D. The histology of the resected specimens showed that there was no obvious new bone formation around the materials in groups B and C, and there was abundant new bone formation around the periphery and along the voids of the materials and active bone remodeling in group D. The SEM observation of the bone-implant interface demonstrated that no new bone formation was observed at the bone-implant interface in groups B and C. However, bony connections and blurred boundaries were observed between the material and host bone tissue in group D. The biomechanical test showed the maximal compression force of groups B and D were significantly higher than that of groups A and C (P<0.05), but there was no significant difference between groups B and D (P>0.05).ConclusionThe novel synthetic composite Lev@MSNs/n-HA/PU exhibit good antibacterial activities, osteoconductivity, and biomechanical properties, and show great potential in the treatment of chronic osteomyelitis of rabbits.

    Release date:2018-07-12 06:19 Export PDF Favorites Scan
  • Application and research status of bioactive glass in bone repair

    ObjectiveTo summarize the clinical application and research status of bioactive glass (BAG) in bone repair.MethodsThe recently published literature concerning BAG in bone repair at home and abroad was reviewed and summarized.ResultsBAG has been widely used in clinical bone repair with a favorable effectiveness. In the experimental aspect, to meet different clinical application needs, BAG has been prepared in different forms, such as particles, prosthetic coating, drug and biological factor delivery system, bone cement, and scaffold. And the significant progress has been made.ConclusionBAG has been well studied in the field of bone repair due to its excellent bone repair performance, and it is expected to become a new generation of bone repair material.

    Release date:2020-06-15 02:43 Export PDF Favorites Scan
  • In vivo biological safety study of porous zinc oxide/hydroxyapatite composite materials

    ObjectiveTo evaluate the in vivo biological safety of porous zinc oxide (ZnO)/hydroxyapatite (HA) composite materials.MethodsThe porous ZnO/HA composite materials and porous HA materials were prepared by the spark plasma sintering technology. First, the materials were characterized, including scanning electron microscopy to observe the material structure, in vitro degradation experiments to detect the degradation rate of the materials, and inductively coupled plasma emission spectrometer to detect the concentration of Zn2+ dissolved out of the composite material degradation. Then the two kinds of material extracts were prepared for acute systemic toxicity test. Fifteen male Kunming mice were randomly divided into groups A, B, and C (n=5) and injected intraperitoneally with normal saline, HA extracts, and ZnO/HA extracts, respectively. The body mass of the mice was recorded before injection and at 24, 48, and 72 hours after injection. The liver and kidney tissues were taken at 72 hours for HE staining to evaluate the safety of the composite material. Finally, the biological safety of the material in vivo was evaluated by implantation experiment. The eighteen male New Zealand white rabbits were randomly divided into HA group and ZnO/HA group (n=9); a bilateral radius defect model (1 cm) was established, and the right forelimbs of the two groups were implanted with porous HA materials and porous ZnO/HA composite materials, respectively; the left untreated as a blank control. The general condition of the animals were observed after operation. The rabbit blood was collected at 1 day before operation and at 1 day, 1 week, 4 weeks, and 8 weeks after operation for routine blood test (inflammation-related indicators) and blood biochemistry (liver and kidney function-related indicators). X-ray films were taken at 4, 8, and 12 weeks after operation to observe the repair of bone defects.ResultsMaterial characterization showed that porous ZnO/HA composite materials had interconnected large and small pore structures with a pore size between 50 and 500 μm, which degraded faster than porous HA materials, and continuously and slowly dissolved Zn2+. The acute systemic toxicity test showed that the mice in each group had no abnormal performance after injection, and the body mass increased (P<0.05). HE staining showed that the cells shape and structure of liver and kidney tissue were normal. Animal implantation experiments showed that all rabbits survived until the experiment was completed; routine blood tests showed inflammation in each group (neutrophils, monocytes, and lymphocytes increased) at 1 day after operation, and all returned to normal at 8 weeks (P>0.05); compared with 1 day before operation, the content of inflammatory cells in the HA group increased at 1 day, 1 week, and 4 weeks after operation (P<0.05), and the ZnO/HA group increased at 1 day after operation (P<0.05); blood biochemistry showed that the liver and kidney function indexes were in the normal range; X-ray films showed that the ZnO/HA group had better osseointegration than the HA group at 4 weeks after operation.ConclusionThe porous ZnO/HA composite material has good in vivo biological safety and good bone repair ability, which is a potential bone repair material.

    Release date:2021-07-29 05:02 Export PDF Favorites Scan
  • Application and research progress of 3D printing magnesium-based biological scaffolds in the field of bone regeneration

    In recent years, 3D printing technology, as a new material processing technology, can precisely control the macroscopic and microstructure of biological scaffolds and has advantages that traditional manufacturing methods cannot match in the manufacture of complex bone repair scaffolds. Magnesium ion is one of the important trace elements of the human body. It participates in many physiological activities of the body and plays a very important role in maintaining the normal physiological function of the organism. In addition, magnesium ions also have the characteristics of promoting the secretion of osteogenic proteins by osteoblasts and osteogenic differentiation of mesenchymal stem cells. By combining with 3D printing technology, more and more personalized magnesium-based biological scaffolds have been produced and used in bone regeneration research in vivo and in vitro. Therefore, this article reviews the application and research progress of 3D printing magnesium-based biomaterials in the field of bone regeneration and repair.

    Release date:2023-05-23 03:05 Export PDF Favorites Scan
  • Research progress on modification of polyetheretherketone materials for bone repair

    Polyetheretherketone is one of the most commonly used materials for the production of orthopaedic implants, but the osseointegration capacity of polyetheretherketone is poor because of its bioinert surface, which greatly limits its clinical application. In recent years, scholars have carried out a lot of research on the modification of polyetheretherketone materials in order to improve its osseointegration capacity. At present, the modification of polyetheretherketone is mainly divided into surface modification and blend modification. Therefore, this paper summarizes the research progress of polyetheretherketone material modification technology and its influence on osseointegration from two aspects of surface modification and blend modification for polyetheretherketone materials used in the field of bone repair, so as to provide a reference for the improvement and transformation of polyetheretherketone materials for bone repair in the future.

    Release date:2022-11-24 04:15 Export PDF Favorites Scan
  • The application and research progress of in-situ tissue engineering technology in bone and cartilage repair

    Objective To review the application and research progress of in-situ tissue engineering technology in bone and cartilage repair. Methods The original articles about in-situ tissue engineering technology in bone and cartilage repair were extensively reviewed and analyzed. Results In-situ tissue engineering have been shown to be effective in repairing bone defects and cartilage defects, but biological mechanisms are inadequate. At present, most of researches are mainly focused on animal experiments, and the effect of clinical repair need to be further studied. Conclusion In-situ tissue engineering technology has wide application prospects in bone and cartilage tissue engineering. However, further study on the mechanism of related cytokines need to be conducted.

    Release date:2018-10-09 10:34 Export PDF Favorites Scan
  • Stem cells sheets for bone and cartilage repair

    Cell sheet technology refers to the preparation of cells into thin sheets, which retains a large amount of extracellular matrix, cell-cell junctions, and has a wide range of applications in the repair and regeneration of osteochondral tissues. This paper discusses the types, properties, and construction methods of stem cell sheets, and reviews the current research status of vascularization of stem cell sheets and their composite application with various cytokines and scaffolding materials for bone and cartilage repair, with the aim of exploring the direction of the further development of stem cell sheets in the field of bone and cartilage.

    Release date:2023-10-24 03:04 Export PDF Favorites Scan
  • Experimental study on repairing rabbit skull defect with bone morphogenetic protein 2 peptide/functionalized carbon nanotube composite

    ObjectiveTo observe and compare the effects of peptides on the repair of rabbit skull defects through two different binding modes of non-covalent and covalent, and the combination of carboxyl (-COOH) and amino (-NH2) groups with materials.MethodsTwenty-one 3-month-old male ordinary New Zealand white rabbits were numbered 1 to 42 on the left and right parietal bones. They were divided into 5 groups using a random number table, the control group (group A, 6 sides) and the material group 1, 2, 3, 4 (respectively group B, C, D, E, 9 sides in each group). All animals were prepared with 12-mm-diameter skull defect models, and bone morphogenetic protein 2 (BMP-2) non-covalently bound multiwalled carbon nanotubes (MWCNT)-COOH+poly (L-lactide) (PLLA), BMP-2 non-covalently bound MWCNT-NH2+PLLA, BMP-2 covalently bound MWCNT-COOH+PLLA, and BMP-2 covalently bound MWCNT-NH2+PLLA were implanted into the defects of groups B, C, D, and E, respectively. At 4, 8, and 12 weeks after operation, the samples were taken for CT scanning and three-dimensional reconstruction, the ratio of bone tissue regeneration volume to total volume and bone mineral density were measured, and the histological observation of HE staining and Masson trichrome staining were performed to quantitatively analyze the volume ratio of new bone tissue.ResultsCT scanning and three-dimensional reconstruction showed that with the extension of time, the defects in groups A-E were filled gradually, and the defect in group E was completely filled at 12 weeks after operation. HE staining and Masson trichrome staining showed that the volume of new bone tissue in each group gradually increased with time, and regenerated mature bone tissue appeared in groups D and E at 12 weeks after operation. Quantitative analysis showed that at 4, 8, and 12 weeks after operation, the ratio of bone tissue regeneration volume to total volume, bone mineral density, and the volume ratio of new bone tissue increased gradually over time; and at each time point, the above indexes increased gradually from group A to group E, and the differences between groups were significant (P<0.05).ConclusionThrough covalent binding and using -NH2 to bound peptides with materials, the best bone repair effect can be achieved.

    Release date:2021-03-26 07:36 Export PDF Favorites Scan
  • Repair of segmental bone defects in rabbits’ radius with domestic porous tantalum encapsulated with pedicled fascial flap

    Objective To investigate the effect of domestic porous tantalum encapsulated with pedicled fascial flap on repairing of segmental bone defect in rabbits’ radius. Methods A total of 60 New Zealand white rabbits (aged 6- 8 months and weighing 2.5-3.0 kg) were randomly divided into the experimental group and control group (30 rabbits each group). A 1.5 cm segmental bone defect in right radius was established as the animal model. The porous tantalums encapsulated with pedicled fascial flaps (30 mm×20 mm) were implanted in the created bone defect in the experimental group, and the porous tantalums were only implanted in the control group. X-ray films were observed at the day after operation and at 4, 8, and 16 weeks after operation. Specimens were taken out at 4, 8, and 16 weeks after operation for HE staining and toluidine blue staining observation. The maximum load force and bending strength were detected by three point bending biomechanical test, and the Micro-CT analysis and quantitative analysis of the new bone volume fraction (BV/TV) were performed at 16 weeks after operation to compare the bone defect repair abilityin vivo in 2 groups. Results All incisions healed by first intention without wound infection. At 4, 8, and 16 weeks after operation, the X-ray films showed that the implants were well maintained without apparent displacement. As followed with time, the combination between the implants and host bone became more and more closely, and the fracture line gradually disappeared. HE staining and toluidine blue staining showed that new bone mass and maturity gradually increased at the interface and inside materials in 2 groups, and the new bone gradually growed from the interface to internal pore. At 16 weeks after operation, the three point bending biomechanical test showed that the maximum load force and bending strength in the experimental were (96.54±7.21) N and (91.26±1.76) MPa respectively, showing significant differences when compared with the control group [(82.65±5.65) N and (78.53±1.16) MPa respectively] (t=3.715, P=0.004; t=14.801, P=0.000). And Micro-CT analysis exhibited that there were a large amount of new bone at the interface and the surface of implant materials and inside the materials. The new bone BV/TV in the experimental group (32.63%±3.56%) was significantly higher than that in control group (25.07%±4.34%) (t=3.299, P=0.008). Conclusion Domestic porous tantalum encapsulated with pedicled fascial flap can increase local blood supply, strengthen material bone conduction ability, and promote the segmental bone defect repair.

    Release date:2017-10-10 03:58 Export PDF Favorites Scan
  • Advantages and challenges of carbon nanotubes as bone repair materials

    With the in-depth research on bone repair process, and the progress in bone repair materials preparation and characterization, a variety of artificial bone substitutes have been fully developed in the treatment of bone related diseases such as bone defects. However, the current various natural or synthetic biomaterials are still unable to achieve the structure and properties of natural bone. Carbon nanotubes (CNTs) have provided a new direction for the development of new materials in the field of bone repair due to their excellent structural stability, mechanical properties, and functional group modifiability. Moreover, CNTs and their composites have broad prospects in the design of bone repair materials and as drug delivery carriers. This paper describes the advantages of CNTs related to bone tissue regeneration from the aspects of morphology, chemistry, mechanics, electromagnetism, and biosafety, as well as the application of CNTs in drug delivery carriers and reinforcement components of scaffold materials. In addition, the potential problems and prospects of CNTs in bone regenerative medicine are discussed.

    Release date:2021-03-26 07:36 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content