Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.
The incidence of lung cancer has increased significantly during the past decades. Pathology is the gold standard for diagnosis and the corresponding treatment measures selection of lung cancer. In recent years, with the development of artificial intelligence and digital pathology, the researches of pathological image analysis have achieved remarkable progresses in lung cancer. In this review, we will introduce the research progress on artificial intelligence in pathological classification, mutation genes and prognosis of lung cancer. Artificial intelligence is expected to further accelerate the pace of precision pathology.
In recent years, deep learning has provided a new method for cancer prognosis analysis. The literatures related to the application of deep learning in the prognosis of cancer are summarized and their advantages and disadvantages are analyzed, which can be provided for in-depth research. Based on this, this paper systematically reviewed the latest research progress of deep learning in the construction of cancer prognosis model, and made an analysis on the strengths and weaknesses of relevant methods. Firstly, the construction idea and performance evaluation index of deep learning cancer prognosis model were clarified. Secondly, the basic network structure was introduced, and the data type, data amount, and specific network structures and their merits and demerits were discussed. Then, the mainstream method of establishing deep learning cancer prognosis model was verified and the experimental results were analyzed. Finally, the challenges and future research directions in this field were summarized and expected. Compared with the previous models, the deep learning cancer prognosis model can better improve the prognosis prediction ability of cancer patients. In the future, we should continue to explore the research of deep learning in cancer recurrence rate, cancer treatment program and drug efficacy evaluation, and fully explore the application value and potential of deep learning in cancer prognosis model, so as to establish an efficient and accurate cancer prognosis model and realize the goal of precision medicine.
Traditional biomedical data analysis technology faces enormous challenges in the context of the big data era. The application of deep learning technology in the field of biomedical analysis has ushered in tremendous development opportunities. In this paper, we reviewed the latest research progress of deep learning in the field of biomedical data analysis. Firstly, we introduced the deep learning method and its common framework. Then, focusing on the proposal of biomedical problems, data preprocessing method, model building method and training algorithm, we summarized the specific application of deep learning in biomedical data analysis in the past five years according to the chronological order, and emphasized the application of deep learning in medical assistant diagnosis. Finally, we gave the possible development direction of deep learning in the field of biomedical data analysis in the future.
Clinically, non-contrastive computed tomography (NCCT) is used to quickly diagnose the type and area of stroke, and the Alberta stroke program early computer tomography score (ASPECTS) is used to guide the next treatment. However, in the early stage of acute ischemic stroke (AIS), it’s difficult to distinguish the mild cerebral infarction on NCCT with the naked eye, and there is no obvious boundary between brain regions, which makes clinical ASPECTS difficult to conduct. The method based on machine learning and deep learning can help physicians quickly and accurately identify cerebral infarction areas, segment brain areas, and operate ASPECTS quantitative scoring, which is of great significance for improving the inconsistency in clinical ASPECTS. This article describes current challenges in the field of AIS ASPECTS, and then summarizes the application of computer-aided technology in ASPECTS from two aspects including machine learning and deep learning. Finally, this article summarizes and prospects the research direction of AIS-assisted assessment, and proposes that the computer-aided system based on multi-modal images is of great value to improve the comprehensiveness and accuracy of AIS assessment, which has the potential to open up a new research field for AIS-assisted assessment.
Lung diseases such as lung cancer and COVID-19 seriously endanger human health and life safety, so early screening and diagnosis are particularly important. computed tomography (CT) technology is one of the important ways to screen lung diseases, among which lung parenchyma segmentation based on CT images is the key step in screening lung diseases, and high-quality lung parenchyma segmentation can effectively improve the level of early diagnosis and treatment of lung diseases. Automatic, fast and accurate segmentation of lung parenchyma based on CT images can effectively compensate for the shortcomings of low efficiency and strong subjectivity of manual segmentation, and has become one of the research hotspots in this field. In this paper, the research progress in lung parenchyma segmentation is reviewed based on the related literatures published at domestic and abroad in recent years. The traditional machine learning methods and deep learning methods are compared and analyzed, and the research progress of improving the network structure of deep learning model is emphatically introduced. Some unsolved problems in lung parenchyma segmentation were discussed, and the development prospect was prospected, providing reference for researchers in related fields.
ObjectiveTo develop an artificial intelligence based three-dimensional (3D) preoperative planning system (AIHIP) for total hip arthroplasty (THA) and verify its accuracy by preliminary clinical application.MethodsThe CT image database consisting of manually segmented CT image series was built up to train the independently developed deep learning neural network. The deep learning neural network and preoperative planning module were assembled within a visual interactive interface—AIHIP. After that, 60 patients (60 hips) with unilateral primary THA between March 2017 and May 2020 were enrolled and divided into two groups. The AIHIP system was applied in the trial group (n=30) and the traditional acetate templating was applied in the control group (n=30). There was no significant difference in age, gender, operative side, and Association Research Circulation Osseous (ARCO) grading between the two groups (P>0.05). The coincidence rate, preoperative and postoperative leg length discrepancy, the difference of bilateral femoral offsets, the difference of bilateral combined offsets of two groups were compared to evaluate the accuracy and efficiency of the AIHIP system.ResultsThe preoperative plan by the AIHIP system was completely realized in 27 patients (90.0%) of the trial group and the acetate templating was completely realized in 17 patients (56.7%) of the control group for the cup, showing significant difference (P<0.05). The preoperative plan by the AIHIP system was completely realized in 25 patients (83.3%) of the trial group and the acetate templating was completely realized in 16 patients (53.3%) of the control group for the stem, showing significant difference (P<0.05). There was no significant difference in the difference of bilateral femoral offsets, the difference of bilateral combined offsets, and the leg length discrepancy between the two groups before operation (P>0.05). The difference of bilateral combined offsets at immediate after operation was significantly less in the trial group than in the control group (t=−2.070, P=0.044); but there was no significant difference in the difference of bilateral femoral offsets and the leg length discrepancy between the two groups (P>0.05).ConclusionCompared with the traditional 2D preoperative plan, the 3D preoperative plan by the AIHIP system is more accurate and detailed, especially in demonstrating the actual anatomical structures. In this study, the working flow of this artificial intelligent preoperative system was illustrated for the first time and preliminarily applied in THA. However, its potential clinical value needs to be discovered by advanced research.
In recent years, with the rapid development of machine learning techniques,the deep learning algorithm has been widely used in one-dimensional physiological signal processing. In this paper we used electroencephalography (EEG) signals based on deep belief network (DBN) model in open source frameworks of deep learning to identify emotional state (positive, negative and neutrals), then the results of DBN were compared with support vector machine (SVM). The EEG signals were collected from the subjects who were under different emotional stimuli, and DBN and SVM were adopted to identify the EEG signals with changes of different characteristics and different frequency bands. We found that the average accuracy of differential entropy (DE) feature by DBN is 89.12%±6.54%, which has a better performance than previous research based on the same data set. At the same time, the classification effects of DBN are better than the results from traditional SVM (the average classification accuracy of 84.2%±9.24%) and its accuracy and stability have a better trend. In three experiments with different time points, single subject can achieve the consistent results of classification by using DBN (the mean standard deviation is1.44%), and the experimental results show that the system has steady performance and good repeatability. According to our research, the characteristic of DE has a better classification result than other characteristics. Furthermore, the Beta band and the Gamma band in the emotional recognition model have higher classification accuracy. To sum up, the performances of classifiers have a promotion by using the deep learning algorithm, which has a reference for establishing a more accurate system of emotional recognition. Meanwhile, we can trace through the results of recognition to find out the brain regions and frequency band that are related to the emotions, which can help us to understand the emotional mechanism better. This study has a high academic value and practical significance, so further investigation still needs to be done.
With the innovation and breakthrough of key technologies in smart medicine, actively exploring smart emergency measures and methods with artificial intelligence as the core technology is helpful to improve the ability of emergency medical team to diagnose and treat acute and critical diseases. This paper reviews the application status of artificial intelligence in pre-hospital and in-hospital diagnosis and treatment capabilities and system construction, expounds on the challenges it faces and possible coping strategies, and provides a reference for the in-depth integration and development of “artificial intelligence + emergency medicine” education, research and production during the new wave of scientific and technological revolution.
Neuroimaging technologies have been applied to the diagnosis of schizophrenia. In order to improve the performance of the single-modal neuroimaging-based computer-aided diagnosis (CAD) for schizophrenia, an ensemble learning algorithm based on learning using privileged information (LUPI) was proposed in this work. Specifically, the extreme learning machine based auto-encoder (ELM-AE) was first adopted to learn new feature representation for the single-modal neuroimaging data. Random project algorithm was then performed on the learned high-dimensional features to generate several new feature subspaces. After that, multiple feature pairs were built among these subspaces to work as source domain and target domain, respectively, which were used to train multiple support vector machine plus (SVM+) classifier. Finally, a strong classifier is learned by combining these SVM+ classifiers for classification. The proposed algorithm was evaluated on a public schizophrenia neuroimaging dataset, including the data of structural magnetic resonance imaging (sMRI) and functional MRI (fMRI). The results showed that the proposed algorithm achieved the best diagnosis performance. In particular, the classification accuracy, sensitivity and specificity of the proposed algorithm were 72.12% ± 8.20%, 73.50% ± 15.44% and 70.93% ± 12.93%, respectively, on the sMRI data, and it also achieved the classification accuracy of 72.33% ± 8.95%, sensitivity of 68.50% ± 16.58% and specificity of 75.73% ± 16.10% on the fMRI data. The proposed algorithm overcomes the problem that the traditional LUPI methods need the additional privileged information modality as source domain. It can be directly applied to the single-modal data for classification, and also can improve the classification performance. Therefore, it suggests that the proposed algorithm will have wider applications.