【Abstract】 Objective To detect the expression of lung resistance protein (LRP) and investigate its significance in pancreatic carcinoma cell lines (SW1990, PCT-2, PCT-3, PCT-4, Aspc-1, Capan-1, Mia-PaCa-2 and Panc-1). Methods Reverse transcription PCR (RT-PCR) and immunocytochemistry (ICC) were carried out to investigate the expression of LRP. Results LRP mRNA was absent in PCT-2 cell line by RT-PCR. Mild to moderate expression level was found in other pancreatic carcinoma cell lines. PCT-4, Aspc-1 and Panc-1 presented the highest LRP mRNA expression level, in contrast, SW1990, PCT-3, Capan-1 and Mia-PaCa-2 showed moderate LRP mRNA expression. The median value was 0.56±0.33. LRP was further validated by ICC. Absent to weak protein expression of LRP was found in PCT-2 and PCT-3. Overexpressed LRP was present in SW1990, Capan-1 and Aspc-1, furthermore, the highest expression of LRP was found in Panc-1, Mia-PaCa-2 and PCT-4 cell lines. Conclusion All these data showed that LRP might play an important role in multidrug resistance of pancreatic carcinoma.
Objective To investigate the reversal of the multidrug resistant gene mdr1 in vivo by antisense oligodeoxynucleotide (ASODN) on the basis of study in vitro. Methods The cultured drug-resistant human hepatocellular carcinoma cells were injected under the skin of axilla to establish the tumor model of nude mice. mdr1 ASODN accompanied by Lipofectamine were injected locally and ADM was injected intraperitoneally. Control 1 and control 2 were locally injected by Lipofectamine and normal saline separately, and ADM was also injected intraperitoneally. Results As time went on the tumor size increased and from the 5th day on alterations were marked, tumor size in different time phase showed marked difference to the prior time phase with significant difference (P<0.05). Tumor size in group ASODN was marked smaller than that of other 3 groups after the 5th day (P<0.05),while tumor size of group control 1,2 and group SODN in different phase showed no significant difference (Pgt;0.05). The results suggested that SODN and Lipofectamine showed no marked effect on tumor growth of nude mice and ASODN had marked inhibition effect on tumor growth. Conclusion mdr1 ASODN can also reverse multidrug resistance of drug-resistant human hepatocellular carcinoma cells in vivo. After the treatment the tumor’s growth in nude mice will slow down in a range of time.
Objective To investigate the clinical characteristics and drug sensitivity of patients with Gram-negative bacilli infection, and evaluate the risk factors related to infection, so as to provide a theoretical basis for clinical prevention and treatment of hospital-acquired infection. Methods The complete medical records of 181 patients with Gram-negative bacilli infection in the Department of Respiratory and Critical Care Medicine of Beijing Anzhen Hospital from January 2018 to September 2021 were retrospectively collected. They were divided into a Carbapenem-resistant Gram-negative bacillus (CR-GNB) group and a Carbapenem-sensitive Gram-negative bacillus (CS-GNB) group according to their different sensitivities to carbapenems. Results A total of 238 strains of Gram-negative bacilli were detected, including 108 strains of CR-GNB and 130 strains of CS-GNB. Acinetobacter baumannii was the most common, followed by Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter cloacae, Escherichia coli and Serratia marcescens. Univariate analysis showed that the risk factors of CR-GNB infection were heart disease and cerebrovascular disease, receiving invasive mechanical ventilation, deep venous catheterization and indwelling catheter, hypoproteinemia, renal insufficiency, pre-infection exposure to tigecycline, carbapenems, vancomycin, polymyxin, and combined use of antibiotics. Hypoproteinemia and deep venous catheterization were independent risk factors for CR-GNB infection. The resistance rates of CR-GNB to cefepime, ceftazidime, levofloxacin and ciprofloxacin were 88.0%, 88.0%, 86.1% and 75.0%, respectively. The resistance rate to cefuroxime, amika, ceftriaxone, gentamicin and cotrimoxazole was low, and the resistance rate to ceftazidime avibactam was the lowest (3.7%). Except tetracycline, tigecycline, cefuroxime, polymyxin, cefazolin and ampicillin, the drug resistance rates of CR-GNB group to other antibacterial drugs were higher than those of CS-GNB group, and the differences were statistically significant (P<0.05). The all-cause mortality in CR-GNB group (42.4%) was significantly higher than that in CS-GNB group (6.3%), and the difference was statistically significant (P<0.05). Conclusions The disease burden caused by CR-GNB infection is becoming heavier and heavier, which has a serious impact on the prognosis of hospitalized patients. The increase of antibiotic resistance leads to poor efficacy of antimicrobial therapy. Therefore, early identification of high-risk groups of infection and reasonable and prudent application of antimicrobial therapy can achieve the purpose of reducing the mortality of infection and improving the prognosis of hospitalized patients.
Objective To dynamically study the formation of multidrug resistance(MDR) of human hepatocellular carcinoma cell SMMC-7721 induced by Adriamycin (ADM) and the role of multidrug resistance-associated protein(MRP) in its mechanisms.Methods Hepatocellular carcinoma cell SMMC-7721 was cultured in RPMI-1640 medium containing ADM with progressively increased concentration or directly cultured in medium containing different concentrations of ADM. Resistant index of drug-resistant variants of SMMC-7721 cell was determined by drawing cell dosage-reaction curves.Levels of MRP mRNA expression were detected by reverse transcription-polymerase chain reaction(RTPCR). Intracellular rubidomycin(DNR) concentration was examined by flow cytometry(FCM).Results With progressive increasing of ADM concentration in medium resistant index and levels of MRP mRNA expression were correspondingly increased but intracellular DNR concentration was markly reduced. When parental cells were directly cultured in medium containing different concentrations of ADM, the higher the ADM concentration, the higher the level of MRP mRNA expression, but intracellular DNR concentration was kept at the similar high level and most cells died. Conclusion ADM may progressively induce SMMC-7721 cell resistant to multiple chemotherapeutic drugs with reduced intracellular DNR accumulation associated with the overexpression of MRP gene.
Objective To investigate the effect of phosphorothioate antisense oligonucleotides(AS-ODN) on suppressing multidrug resistance-associated protein gene(MRP) in human drug-resistant hepatocellular carcinoma cell line (SMMC-7721/ADM). Methods Cell line was transfected with a synthetic S-ODN complementary to the coding region of MRP mRNA, Lipofectamine acting as carrier. The drug sensitivity was measured by MTT assay. The expression of MRP mRNA was detected by RT-PCR and the expression of P190 was detected by flow cytometry. Results AS-ODN inhibited expression of MRP mRNA and P190 and promoted sensitivity to daunorubicinum and adriamycinum. Conclusion AS-ODN can reduce the expression of MRP gene. MDR caused by MRP is an important cause of multidrug resistance of SMMC-7721/ADM.
Objective To evaluate the efficacy and safety of colistin in the treatment of severe infections. Methods PubMed, ISI Web of Knowledge and Wanfang databases were searched. The initial literatures and references listed in the literature were manually searched. Controlled studies were analyzed using RevMan 5. 0 software.Results Eleven studies were enrolled, including five prospective studies and six retrospective studies. Pooled analysis showed that, compared with other therapies, treatment with colistin in severe infections did not improve 28 or 30-day mortality, clinical symptoms, or bacteria clearance,however, increased the risk of kidney damage. Subgroup analysis showed that colistin did not improve symptoms, mortality ( which was even higher in the patients with drug resistant bacteria infection) , or kidney damage in drug resistant bacteria infections and ventilator associated pneumonia ( VAP) compared with the other antibiotic group. Conclusions Colistin is not superior to the other antibiotics in severe infections.However, there are some shortcomings in our meta-analysis due to limited high-quality RCTs, thus welldesigned RCTs are still needed before final conclusion is made.
Objective To investigate the reversal effect of antisense phosphorothioate oligonucleotide (ASOND) on human hepatoma resistant cells. Methods Human hepatoma resistant cells SMMC-7721 was transfected with synthetic antisense phosphorothioate oligonucleotide complementary to the 5′ region flanking the AUG initiation codon mediated by lipofectamine. In vitro drug sensitivity was measured by MTT assay. The expression of P-170 was determined by flow cytometry and mRNA was assessed by RT-PCR. Results ASOND inhibited the expression of mRNA and p-170 in SMMC-7721, enhanced the sensitivity of SMMC-7721 to chemotherapeutic drug. The best inhibitory effect was achived by the dose of 0.5μmol/L. Conclusion ASOND enhanced the sensitivity of SMMC-7721 to chemotherapeutic drug and reversed the multidrug resistance of SMMC-7721 partially.
ObjectiveTo explore the relationship between mdr1 gene expression of hepatocellular carcinoma (HCC) and pathological characteristics,chemotherapy and prognosis. MethodsThe mdr1 gene expression of HCC in 56 patients with the methods of immunohistochemistry was studied. The results were analysed with the pathological data by statistic methods. ResultsThe positive expression of mdr1 gene in cancer tissues and pericancerous tissues of HCC were 30/56(53.6%) and 19/56 (33.9%) respectively. The difference was statistically significant (χ2=4.39,P<0.05). The positive expression of mdr1 gene in cancer tissues of untreated patients and in recurrent patients were 22/48(45.8%) and 8/8(100%) respectively.The expression of mdr1 gene was not associated with tumor size, number, tumor thrombus, differentiation, HBsAg and liver cirrhosis. The patients with positive mdr1 expression had a shorter survival time than that of negative ones. But the difference was not statistically significant. Conclusion The positive expression of mdr1 in HCC is 53.6%. It is not associated with tumor size, number, tumor thrombus, tumor differentiation, HBsAg and liver cirrhosis. There are innate multidrug resistance in HCC.
Objective To investigate the role of long non-coding RNA metastasis-associated in colon cancer 1-antisense RNA (MACC1-AS1)in cisplatin resistant gastric cancer and its possible mechanism. Methods Human gastric cancer cell line BGC823 and cisplatin resistant gastric cancer cell line (BGC823/DDP) were selected as the research objects. BGC823/DDP cells were transfected and divided into negative control group (si-NC group, transfected with si-NC empty plasmid) and MACC1-AS1 gene silencing group (si-MACC1-AS1 group, transfected with si-MACC1-AS1 plasmid). The BGC823 cells were transfected and divided into positive control group (pcDNA-NC group, transfected with pcDNA-NC empty plasmid) and MACC1-AS1 gene overexpression group (pcDNA-MACC1-AS1 group, transfected with pcDNA-MACC1-AS1 plasmid). MTT was used to detect the inhibition and 50% inhibition concentration (IC50). Flow cytometry was used to detect apoptosis. Real-time fluorescence quantitative PCR was used to detect the mRNA expression levels of MACC1-AS1, B-lymphoma-2 gene (Bcl-2), Bcl-2 related X gene (Bax), mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), protein kinase B (AKT), and phosphorylated AKT (p-AKT). Western blot was used to detect the protein expression levels of Bax, Bcl-2, p-mTOR, mTOR, AKT, and p-AKT. Results The relative expression level of MACC1-AS1 mRNA in BGC823/DDP cells was higher than that in BGC823 gastric cancer cells (P<0.01). The relative expression level of MACC1-AS1 mRNA in the si-MACC1-AS1 group cells was lower than that in the si-NC group cells (P<0.01). The relative expression level of MACC1-AS1 mRNA in the pcDNA-MACC1-AS1 group cells was higher than that in the pcDNA-NC group cells (P<0.01). The cell growth inhibition rate and IC50 of the si-MACC1-AS1 group were higher than those of the si-NC group (P<0.01). The cell growth inhibition rate and IC50 of the pcDNA-MACC1-AS1 group were lower than those of the pcDNA-NC group (P<0.01). The mRNA and protein relative expression levels of Bcl-2, p-AKT/AKT and p-mTOR/mTOR in the pcDNA-MACC1-AS1 group were significantly higher than those in the pcDNA-NC group (P<0.01). The relative expression levels of Bax protein and mRNA in the pcDNA-MACC1-AS1 group were significantly lower than those in the pcDNA-NC group (P<0.01). The apoptosis rate of the pcDNA-MACC1-AS1 group was significantly lower than that of the pcDNA-NC group (P<0.01). The mRNA and protein relative expression levels of Bcl-2, p-AKT/AKT and p-mTOR/mTOR in the si-MACC1-AS1 group were significantly lower than those in the si-NC group (P<0.01). The relative expression levels of Bax protein and mRNA in the si-MACC1-AS1 group were significantly higher than those in the si-NC group (P<0.01). The apoptosis rate of the si-MACC1-AS1 group was significantly higher than that of the si-NC group (P<0.01). Conclusions MACC1-AS1 highly expresses in cisplatin resistant gastric cancer cells. Overexpression of MACC1-AS1 regulates AKT/mTOR pathway mediated apoptosis and enhances cisplatin resistance of gastric cancer cells.
Multidrug resistance (MDR) remains the major obstacle to the success of clinical cancer chemotherapy. P-glycoprotein (P-gp), encoded by the MDR1, is an important part with complex mechanisms associated with the MDR. In order to overcome the MDR of tumors, we in the present experimental design incorporated small interfering RNA (siRNA) targeting MDR1 gene and anticancer drug paclitaxel (PTX) into the solid lipid nanoparticles (SLNs) to achieve the combinational therapeutic effects of genetherapy and chemotherapy. In this study, siRNA-PTX-SLNs were successfully prepared. The cytotoxicity of blank SLNs and siRNA-PTX-SLNs in MCF-7 cells and MCF-7/ADR cells were detected by MTT; and the uptake efficiency of PTX in MCF-7/ADR cells were detected via HPLC method; quantitative real-time PCR and flow cytometry were performed to investigate the silencing effect of siRNA-PTX-SLNs on MDR1 gene in MCF-7/ADR cells. The results showed that PTX loaded SLNs could significantly inhibit the growth of tumor cells, and more importantly, the MDR tumor cells treated with siRNA-PTX-SLNs showed the lowest viability. HPLC study showed that SLNs could enhance the cellular uptake for PTX. Meanwhile, siRNA delivered by SLNs significantly decreased the P-gp expression in MDR tumor cells, thus increased the cellular accumulation of rhodamine123 as a P-gp substrate. In conclusion, the MDR1 gene could be silenced by siRNA-PTX-SLNs, which could promote the growth inhibition efficiency of PTX on tumor cells, leading to synergetic effect on MDR tumor therapy.