To better analyze the problem of abnormal neuromuscular coupling related to motor dysfunction for stroke patients, the functional coupling of the multichannel electromyography (EMG) were studied and the difference between stroke patients and healthy subjects were further analyzed to explore the pathological mechanism of motor dysfunction after stroke. Firstly, the cross-frequency coherence (CFC) analysis and non-negative matrix factorization (NMF) were combined to construct a CFC-NMF model to study the linear coupling relationship in bands and the nonlinear coupling characteristics in different frequency ratios during elbow flexion and extension movement. Furthermore, the significant coherent area and sum of cross-frequency coherence were respectively calculated to quantitatively describe the intermuscular linear and nonlinear coupling characteristics. The results showed that the linear coupling relationship between multichannel muscles was different in frequency bands and the overall coupling was stronger in low frequency band. The linear coupling strength of the stroke patients was lower than that of the healthy subjects in different frequency bands especially in beta and gamma bands. For the nonlinear coupling, the intermuscular coupling strength of stroke patients in different frequency ratios was significantly lower than that of the healthy subjects, and the coupling strength in the frequency ratio 1∶2 was higher than that in the frequency ratio 1∶3. This method can provide a theoretical basis for exploring the intermuscular coupling mechanism of patients with motor dysfunction.
The real physical image of the affected limb, which is difficult to move in the traditional mirror training, can be realized easily by the rehabilitation robots. During this training, the affected limb is often in a passive state. However, with the gradual recovery of the movement ability, active mirror training becomes a better choice. Consequently, this paper took the self-developed shoulder joint rehabilitation robot with an adjustable structure as an experimental platform, and proposed a mirror training system completed by next four parts. First, the motion trajectory of the healthy limb was obtained by the Inertial Measurement Units (IMU). Then the variable universe fuzzy adaptive proportion differentiation (PD) control was adopted for inner loop, meanwhile, the muscle strength of the affected limb was estimated by the surface electromyography (sEMG). The compensation force for an assisted limb of outer loop was calculated. According to the experimental results, the control system can provide real-time assistance compensation according to the recovery of the affected limb, fully exert the training initiative of the affected limb, and make the affected limb achieve better rehabilitation training effect.
Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.
It is the functional connectivity between motor cortex and muscle that directly relates to the rehabilitation of the dysfunction in upper limbs and neuromuscular activity status, which can be detected by electroencephalogram-electromyography (EEG-EMG) coherence analysis. In this study, based on coherence analysis method, we process the acquisition signals which consist of 9 channel EEG signal from motor cortex and 4 channel EMG signal from forearm, by using 4 groups of hand motions in the healthy subjects, including flexor digitorum, extensor digitorum, wrist flexion, and wrist extension. The results showed that in the β-band, the coherence coefficients between C3 and flexor digitorum (FD) was greater than extensor digitorum (ED) in the right hand flexor digitorum movement; the coherence coefficients between C3 and ED was greater than FD in the right hand extensor digitorum movement; the coherence coefficients between C3 and flexor carpi ulnaris (FCU) was greater than extensor carpi radialis (ECR) in the right hand wrist flexion movement; the coherence coefficients between C3 and ECR was greater than FCU in the right hand wrist extension movement. This analysis provides experimental basis to explore the information decoding of hand motion based on corticomuscular coherence (CMC).
The automatic recognition technology of muscle fatigue has widespread application in the field of kinesiology and rehabilitation medicine. In this paper, we used surface electromyography (sEMG) to study the recognition of leg muscle fatigue during circuit resistance training. The purpose of this study was to solve the problem that the sEMG signals have a lot of noise interference and the recognition accuracy of the existing muscle fatigue recognition model is not high enough. First, we proposed an improved wavelet threshold function denoising algorithm to denoise the sEMG signal. Then, we build a muscle fatigue state recognition model based on long short-term memory (LSTM), and used the Holdout method to evaluate the performance of the model. Finally, the denoising effect of the improved wavelet threshold function denoising method proposed in this paper was compared with the denoising effect of the traditional wavelet threshold denoising method. We compared the performance of the proposed muscle fatigue recognition model with that of particle swarm optimization support vector machine (PSO-SVM) and convolutional neural network (CNN). The results showed that the new wavelet threshold function had better denoising performance than hard and soft threshold functions. The accuracy of LSTM network model in identifying muscle fatigue was 4.89% and 2.47% higher than that of PSO-SVM and CNN, respectively. The sEMG signal denoising method and muscle fatigue recognition model proposed in this paper have important implications for monitoring muscle fatigue during rehabilitation training and exercise.
Thymoma complicated with polymyositis and myasthenia gravis is a rare case, which can be clearly diagnosed and given symptomatic treatment according to its own diagnostic criteria, imaging and laboratory examinations. This paper reports the clinical data of a thymoma patient with polymyositis and myasthenia gravis admitted to the Seventh Affiliated Hospital of Sun Yat-Sen University, and discusses the possible pathogenesis and treatment methods.
Based on the structure and motion bionic principle of the normal adult fingers, biological characteristics of human hands were analyzed, and a wearable exoskeleton hand function training device for the rehabilitation of stroke patients or patients with hand trauma was designed. This device includes the exoskeleton mechanical structure and the electromyography (EMG) control system. With adjustable mechanism, the device was capable to fit different finger lengths, and by capturing the EMG of the users’ contralateral limb, the motion state of the exoskeleton hand was controlled. Then driven by the device, the user’s fingers conducting adduction/abduction rehabilitation training was carried out. Finally, the mechanical properties and training effect of the exoskeleton hand were verified through mechanism simulation and the experiments on the experimental prototype of the wearable exoskeleton hand function training device.
This study investigated the effect of prolonged walking with load carriage on body posture, muscle fatigue, heart rate and blood pressure of the tested subjects. Ten healthy volunteers performed 30 min walking trials on treadmill (speed=1.1 m/s) with different backpack loads [0% body weight (BW), 10%BW, 15%BW and 20%BW]. The change of body posture, muscle fatigue, heart rate and blood pressure before and after walking and the recovery of muscle fatigue during the rest time (0, 5, 10 and 15 min) were collected using the Bortec AMT-8 and the NDI Optotrak Certus. Results showed that the forward trunk and head angle, muscle fatigue, heart rate and blood pressure increased with the increasing backpack loads and bearing time. With the 20%BW load, the forward angle, muscle fatigue and systolic pressure were significantly higher than with lighter weights. No significantly increased heart rate and diastolic pressure were found. Decreased muscle fatigue was found after removing the backpack in each load trial. But the recovery of the person with 20%BW load was slower than that of 0%BW,10%BW and 15%BW. These findings indicated that the upper limit of backpack loads for college-aged students should be between 15% BW and 20%BW according to muscle fatigue and forward angle. It is suggested that backpack loads should be restricted to no more than 15%BW for walks of up to 30 min duration to avoid irreversible muscle fatigue.
This study aims to address the limitations in gesture recognition caused by the susceptibility of temporal and frequency domain feature extraction from surface electromyography signals, as well as the low recognition rates of conventional classifiers. A novel gesture recognition approach was proposed, which transformed surface electromyography signals into grayscale images and employed convolutional neural networks as classifiers. The method began by segmenting the active portions of the surface electromyography signals using an energy threshold approach. Temporal voltage values were then processed through linear scaling and power transformations to generate grayscale images for convolutional neural network input. Subsequently, a multi-view convolutional neural network model was constructed, utilizing asymmetric convolutional kernels of sizes 1 × n and 3 × n within the same layer to enhance the representation capability of surface electromyography signals. Experimental results showed that the proposed method achieved recognition accuracies of 98.11% for 13 gestures and 98.75% for 12 multi-finger movements, significantly outperforming existing machine learning approaches. The proposed gesture recognition method, based on surface electromyography grayscale images and multi-view convolutional neural networks, demonstrates simplicity and efficiency, substantially improving recognition accuracy and exhibiting strong potential for practical applications.
In this paper, a new surface electromyography (sEMG) signal decomposition method based on spatial location is proposed for the high-density sEMG signals in dynamic muscle contraction. Firstly, according to the waveform correlation of each muscle motor units (MU) in each channel, the firing times are extracted, and then the firing times are classified by the spatial location of MU. The MU firing trains are finally obtained. The simulation results show that the accuracy rate of a single MU firing train after classification is more than 91.67%. For real sEMG signals, the accuracy rate to find a same MU by the “two source” method is over (88.3 ± 2.1)%. This paper provides a new idea for dynamic sEMG signal decomposition.