The ultrastructures of 14 keloids and 7 hypertrophic scars were examined by electron micrascopy.Both lesions were found to be comprised of fibroblasts, macrophages, microfi brils of collagen andmicrovessels which were partly or completely obliterated. Most fibroblasts were of active cell types.They contained abundant coarse endoplasmic reticulum and prominent Golgi complexes. The fibrils inthe lesions were irtegularly arranged. Meanwhile myofibroblasts were often seen in the keloid.In the cytoplasm of the myofibroblasts, in addition to coarse endoplasmic reticulum and Golgi complexes, many fine myofilaments, dense bodies, dense patches and distrupted basal lamina were present. These characteristic features might help to differentiate keloid from hypertrophic sacr.
Objective To summarize functions and mechanisms of fibroblast activation protein (FAP) and its application in targeted therapy. Method Literatures about FAP in recent years were collected to make a review. Results Thereis an important relationship between the FAP and the dipeptidyl peptidase-Ⅳ. FAP has a serine protease activity and is an important immunosuppressive component in the tumor microenvironment. FAP participate in the pathological process of the neoplastic and the non-neoplastic diseases. In the targeted therapy, the enzyme inhibitors, antibodies, vaccines, and prodrugs of FAP had been extensively studied. Conclusion FAP have various functions and participates in pathological process of many diseases, and it is of great significance to research of tumor targeted therapy.
Objective To study the effect of two cytokines, basic fibroblast growth factor(bFGF) and insulin-like growth factor-I(IGF-I), on cell proliferation in chondrocytes of adult rabbits. Methods The primary chondrocytes of adult rabbits were harvested and cultured with bFGF and IGF-I at different concentrations,respectively, as well as with the mixture of the two cytokines; the quantity of cultured chondrocytes was detected by MTT assay at the 24th, 48th and 72th hours; and the final fold increase of different groups was measured by cell count for the 3rd passage; and the proliferation index of the groups was recorded by flowing cytometer on the 14th day. Results ① The cultured chondrocytes with either bFGF, IGF-I or their mixture were significantly more than that of control group at the 24th, 48th and 72th hours (P<0.01). ② After the 3rd passage, the final folds of proliferation were significantly higher in the groups with cytokinesthan in the control group (P<0.01); and the final fold with the mixture ofcytokines was significantly higher than that of both IGF-I and bFGF (P<0.01). ③ Theproliferation index was significantly higher in the groups with cytokines than in the control group (P<0.01); the proliferation index with the mixture of cytokines was significantly higher than that of both IGF-I and bFGF (P<0.05); besides, proliferation index was higher when cytokine was applied twice than once (P<0.05). Conclusion bFGF and IGF-I could promote chondrocytes proliferation of adult rabbits obviously and they are synergistic in cell proliferation.
This study is aimed to investigate the effects of mechanical stretch on the expression of transforming growth factor-β1 (TGF-β1) and fibroblast growth factor-2 (FGF-2), and the signaling pathway in human bronchial epithelioid (16HBE) cells under mechanical stretch. Using loading device with flexible substrate (FX-4000T) to stretch 16HBE cells, we found that the stretching elongation was 15%, at frequency of 1 Hz, stretching for 0.5 h, 1 h, 1.5 h and 2 h. Choosing the higher expression of TGF-β1, FGF-2 and Ca2+ group to carry out intervention experiments, we used the cells pretreated with canonical transient receptor potential 1 (TRPC1) channel antagonist SKF96365, protein kinase C (PKC) inhibitor HA-100, and thereafter mechanical stretch to interpose. Compared with those in the blank control group, TGF-β1 and FGF-2' protein and mRNA, intracellular Ca2+ fluorescence intensity were higher, and the differences were statistically significant (P < 0.05) at the 4 time points, 0.5 h, 1 h, 1.5 h and 2 h. At 0.5 h, the increasing rate was the highest. TGF-β1 protein and mRNA, FGF-2 protein and mRNA, intracellular Ca2+ luorescence intensity in the stretch+SKF96365 and stretch+HA-100 intervented group were decreased, the differences were statistically significant than those in 0.5 h stretch group (P < 0.05) without intervention. The expression of TGF-β1, FGF-2 was up-regulated in 16HBE cells under mechanical stretch, PKC, TRPC1, and Ca2+ may participate in the signal path.
Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.
ObjectiveTo investigate the effect of transforming growth factorβ1 (TGF-β1) and basic fibroblast growth factor 1 (bFGF-1) on the cellular activities, prol iferation, and expressions of ligament-specific mRNA and proteins in bone marrow mesenchymal stem cells (BMSCs) and ligament fibroblasts (LFs) after directly co-cultured. MethodsBMSCs from 3-month-old Sprague Dawley rats were isolated and cultured using intensity gradient centrifugation. LFs were isolated using collagenase. The cells at passage 3 were divided into 6 groups: non-induced BMSCs group (group A), non-induced LFs group (group B), non-induced co-cultured BMSCs and LFs group (group C), induced BMSCs group (group D), induced LFs group (group E), and induced co-cultured BMSCs and LFs group (group F). The cellular activities and prol iferation were examined by inverted contrast microscope and MTT; the concentrations of collagen type Ⅰ and type Ⅲ were determined by ELISA; and mRNA expressions of collagen types I andⅢ, fibronectin, tenascin C, and matrix metalloproteinase 2 (MMP-2) were measured by real-time fluorescent quantitative PCR. ResultsA single cell layer formed in the co-cultured cells under inverted contrast microscope. Group F had fastest cell fusion ( > 90%). The MTT result indicated that group F showed the highest absorbance (A) value, followed by group D, and group B showed the lowest A value at 9 days after culture, showing significant difference (P < 0.05). Moreover, the result of ELISA showed that group F had the highest concentration of collagen type Ⅰ and type Ⅲ (P < 0.05); the concentration of collagen type Ⅲ in group E was significantly higher than that in group D (P < 0.05), but no significant difference was found in the concentration of collagen type Ⅰ between 2 groups (P > 0.05). The ratios of collagen type Ⅰ to type Ⅲ were 1.17, 1.19, 1.10, 1.25, 1.17, and 1.18 in groups A-F; group D was higher than the other groups. The real-time fluorescent quantitative PCR results revealed that the mRNA expressions of collagen type Ⅰ and type Ⅲ and fibronectin were highest in group F; the expression of tenascin C was highest in group D; the expression of MMP-2 was highest in group E; and all differencs were significant (P < 0.05). ConclusionDirectly co-cultured BMSCs and LFs induced by TGF-β1 and bFGF-1 have higher cellular activities, proliferation, and expressions of ligament-specific mRNA and protein, which can be used as a potential source for ligament tissue engineering.
OBJECTIVE: To investigate the influence of basic fibroblast growth factor (bFGF) on adhesion characteristics of osteoblasts, aimed at the important problem in bone tissue engineering of how to promote the adherence of osteoblasts to extracellular matrix materials. METHODS: 5 ng/ml, 10 ng/ml, 50 ng/ml, 100 ng/ml, 200 ng/ml bFGF were used to induce bone marrow stromal-derived osteoblasts of rabbit for 24 hours before incubation, and the common culture medium as the control. The attached cells were calculated with stereology method at 0.5 hour, 1st hour, 2nd hour, 4th hour, 8th hour after seeding. RESULTS: The number of attached cells was significant higher in the experimental group when induced by 10 ng/ml bFGF than that in the control group (P lt; 0.01); the number did not increase with the increase of bFGF concentration and there was no significant difference between the experimental group induced by 100 ng/ml bFGF and control group, and the number was even obviously lower in the experimental group when induced by 200 ng/ml than the control group (P lt; 0.01). CONCLUSION: bFGF can influence the adhesion characteristics of osteoblasts, 10 ng/ml bFGF can promote the adherence of osteoblasts to matrix materials, but 200 ng/ml bFGF may inhibit cell adhesion.
Objective To investigate the effect of TNF-related weak inducer of apoptosis/fibroblast growth Factor-inducible 14 (TWEAK/Fn14) on the cell proliferation by transfecting Fn14 shRNA to PANC-1 cells. Methods The shRNA gene targeting Fn14 gene was constructed and transfected into pancreatic cancer cell line PANC-1 to specifically silence the expression of Fn14 gene. The effect of shRNA interference sequence on the expression of Fn14 was detected by flow cytometry and immunofluorescence. CCK-8 was used to detect the cell proliferation of PANC-1 after blocking TWEAK-induced signal pathway. Western blotting method was used to detect the expressions of downstream factors such as nuclear factor-kappa B (NF-κB), TWEAK and caspase-3 to explore the pathway mechanism of TWEAK/Fn14. Results The absorbance value (A value) in the Fn14 shRNA group was significantly lower than the control groups in 24 hours after transfected (P<0.000 1). After the specific shRNA sequences transfected PANC-1 cells, NF-κB, TWEAK and caspase-3 protein expressions were also significantly lower than the control group (P<0.05), and the apoptosis of PANC-1 cells increased after inhibition of TWEAK/Fn14 signaling pathway. Conclusions TWEAK/Fn14 involved in the progression of pancreatic cancer. The Fn14 expression could influence the process of cell apoptosis.
Objective To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process. MethodsThe identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot. ResultsWhen compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A (P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D (P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased (P<0.05), while NSE, MAP-2, and GFAP genes significantly increased (P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E (P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E (P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E (P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E (P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E (P<0.05). Conclusion Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
ObjectiveTo investigate the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a hypoxia-inducible factor-1α (HIF-1α) inhibitor, on hypoxia induced rat pulmonary arterial adventitial fibroblasts (AFs) proliferation and collagen synthesis, and explore the molecular mechanism.MethodsUnder hypoxic condition, rat AFs were cultured in DMEM medium supplemented with 10% fetal bovine serum in vitro. The cells were divided into five groups, ie. a normoxia group, a hypoxia group and three hypoxia+YC-1 groups (treated with YC-1 at concentration of 0.01, 0.05 and 0.1 mmol/L, respectively). The cells proliferation was determined by MTT method. Collagen synthesis of AFs was measured by 3H-proline incorporation assay. The expression of HIF-1α in AFs in different conditions was measured by Western blot, and the mRNA expression of transforming growth factor-β1 (TGF-β1) was measured by reverse-transcription polymerase chain reaction.ResultsThe proliferation rate and the incorporation data of 3H-proline in the hypoxia group were significantly increased as compared with those in the control group (both P<0.01). YC-1 significantly reduced the proliferation rate and incorporation data of3H-proline induced by hypoxia in a dose-dependent manner. YC-1 could also down-regulate the expressions of HIF-1α and TGF-β1 mRNA significantly (both P<0.01). Compared with the hypoxia group, the expressions of HIF-1α and TGF-β1 mRNA decreased respectively by 65% and 61% in the hypoxia+YC-1 (0.1 mmol/L) group (bothP<0.01).ConclusionsYC-1 can inhibit hypoxia-induced AFs proliferation and collagen synthesis in a dose-dependent manner. The mechanism may relate to YC-1’s inhibitory effect on expressions of HIF-1α and TGF-β1 mRNA.