west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "heart rate" 29 results
  • Non-contact Heart Rate Estimation Based on Joint Approximate Diagonalization of Eigenmatrices Algorithm

    Based on the imaging photoplethysmography (iPPG) and blind source separation (BSS) theory the author put forward a method for non-contact heartbeat frequency estimation. Using the recorded video images of the human face in the ambient light with Webcam, we detected the human face through software, separated the detected facial image into three channels RGB components. And then preprocesses i.e. normalization, whitening, etc. were carried out to a certain number of RGB data. After the independent component analysis (ICA) theory and joint approximate diagonalization of eigenmatrices (JADE) algorithm were applied, we estimated the frequency of heart rate through spectrum analysis. Taking advantage of the consistency of Bland-Altman theory analysis and the commercial Pulse Oximetry Sensor test results, the root mean square error of the algorithm result was calculated as 2.06 beat/min. It indicated that the algorithm could realize the non-contact measurement of heart rate and lay the foundation for the remote and non-contact measurement of multi-parameter physiological measurements.

    Release date: Export PDF Favorites Scan
  • Extraction and recognition of attractors in three-dimensional Lorenz plot

    Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X, Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency (APF) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, APF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.

    Release date:2018-02-26 09:34 Export PDF Favorites Scan
  • Precise measurement of human heart rate based on multi-channel radar data fusion

    To achieve non-contact measurement of human heart rate and improve its accuracy, this paper proposes a method for measuring human heart rate based on multi-channel radar data fusion. The radar data were firstly extracted by human body position identification, phase extraction and unwinding, phase difference, band-pass filtering optimized by power spectrum entropy, and fast independent component analysis for each channel data. After overlaying and fusing the four-channel data, the heartbeat signal was separated using frost-optimized variational modal decomposition. Finally, a chirp Z-transform was introduced for heart rate estimation. After validation with 40 sets of data, the average root mean square error of the proposed method was 2.35 beats per minute, with an average error rate of 2.39%, a Pearson correlation coefficient of 0.97, a confidence interval of [–4.78, 4.78] beats per minute, and a consistency error of –0.04. The experimental results show that the proposed measurement method performs well in terms of accuracy, correlation, and consistency, enabling precise measurement of human heart rate.

    Release date:2024-06-21 05:13 Export PDF Favorites Scan
  • Design of a Front-end Device of Heart Rate Variability Analysis System Based on Photoplethysmography

    Heart rate variability (HRV) is the difference between the successive changes in the heartbeat cycle, and it is produced in the autonomic nervous system modulation of the sinus node of the heart. The HRV is a valuable indicator in predicting the sudden cardiac death and arrhythmic events. Traditional analysis of HRV is based on a multi-electrocardiogram (ECG), but the ECG signal acquisition is complex, so we have designed an HRV analysis system based on photoplethysmography (PPG). PPG signal is collected by a microcontroller from human’s finger, and it is sent to the terminal via USB-Serial module. The terminal software not only collects the data and plot waveforms, but also stores the data for future HRV analysis. The system is small in size, low in power consumption, and easy for operation. It is suitable for daily care no matter whether it is used at home or in a hospital.

    Release date: Export PDF Favorites Scan
  • Heart rate extraction algorithm based on adaptive heart rate search model

    Photoplethysmography (PPG) is a non-invasive technique to measure heart rate at a lower cost, and it has been recently widely used in smart wearable devices. However, as PPG is easily affected by noises under high-intensity movement, the measured heart rate in sports has low precision. To tackle the problem, this paper proposed a heart rate extraction algorithm based on self-adaptive heart rate separation model. The algorithm firstly preprocessed acceleration and PPG signals, from which cadence and heart rate history were extracted respectively. A self-adaptive model was made based on the connection between the extracted information and current heart rate, and to output possible domain of the heart rate accordingly. The algorithm proposed in this article removed the interference from strong noises by narrowing the domain of real heart rate. From experimental results on the PPG dataset used in 2015 IEEE Signal Processing Cup, the average absolute error on 12 training sets was 1.12 beat per minute (bpm) (Pearson correlation coefficient: 0.996; consistency error: −0.184 bpm). The average absolute error on 10 testing sets was 3.19 bpm (Pearson correlation coefficient: 0.990; consistency error: 1.327 bpm). From experimental results, the algorithm proposed in this paper can effectively extract heart rate information under noises and has the potential to be put in usage in smart wearable devices.

    Release date:2022-08-22 03:12 Export PDF Favorites Scan
  • Effect of remote ischemic preconditioning on preoperative heart rate variability in patients undergoing heart valve surgery: A randomized controlled trial

    Objective Explore the effect of remote ischemic preconditioning (RIPC) on preoperative heart rate variability in patients with heart valves. Methods From January 2022 to July 2022, screening was conducted among 118 patients based on inclusion/exclusion criteria. Fifty-eight patients were excluded, and 60 patients participated in this trial with informed consent and were randomly divided into a RIPC group (n=30) and a control group (n=30). Due to the cancellation of surgery, HRV data was missing. 7 patients in the control group were excluded, and 5 patients in the RIPC group were excluded, 23 patients in the final control group and 25 patients in the RIPC group were included in the analysis. Comparison of relevant indicators of heart rate variability (standard deviation of NN interval (SDNN), standard deviation of mean value of NN interval in every five minutes (SDANN), mean square root of difference between consecutive NN intervals (RMSSD), percentage of adjacent RR interval>50 ms (PNN50), low frequency component (LF), high frequency component (HF) and LF/HF) at 8 hours in the morning on the surgical day between two groups of patients. Results There was no statistical difference in baseline characteristics between the two groups, and there was no significant difference in heart rate variability 24 hours before intervention (P>0.05). After the intervention measures were taken, the comparison of the results of heart rate variability at 8 hours on the day of operation showed that SDNN and SDANN of patients in the RIPC group were higher than those in the control group, with statistical differences (P<0.05). Conclusion RIPC can stabilize the preoperative heart rate variability of patients undergoing cardiac valve surgery.

    Release date: Export PDF Favorites Scan
  • Study on Sleep Staging Methods Based on Heart Rate Variability Analysis

    In order to realize sleep staging automatically and conveniently, we used support vector machine (SVM) to analyze the correlation between heart rate variability and sleep stage experimentally. R-R intervals (RRIs) from 33 cases of sleep clinical data of Tianjin Thoracic Hospital were extracted and analyzed by principal component analysis (PCA). The SVM method was used to establish the model and predict the five sleep stages. The prediction accuracy of three-sleep-stage was higher than 80%, in contrast to sleep scoring annotations marked by physiological experts based on electroencephalogram (EEG) golden standard. The result showed that there was a good correlation between heart rate variability and sleep staging. This method is an important supplement to the traditional sleep staging method and has a great value for clinical application.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
  • Shock Shape Representation of Sinus Heart Rate Based on Cloud Model

    The present paper is to analyze the trend of sinus heart rate RR interphase sequence after a single ventricular premature beat and to compare it with the two parameters, turbulence onset (TO) and turbulence slope (TS). Based on the acquisition of sinus rhythm concussion sample, we in this paper use a piecewise linearization method to extract its linear characteristics, following which we describe shock form with natural language through cloud model. In the process of acquisition, we use the exponential smoothing method to forecast the position where QRS wave may appear to assist QRS wave detection, and use template to judge whether current cardiac is sinus rhythm. And we choose some signals from MIT-BIH Arrhythmia Database to detect whether the algorithm is effective in Matlab. The results show that our method can correctly detect the changing trend of sinus heart rate. The proposed method can achieve real-time detection of sinus rhythm shocks, which is simple and easily implemented, so that it is effective as a supplementary method.

    Release date: Export PDF Favorites Scan
  • Intelligent fetal state assessment based on genetic algorithm and least square support vector machine

    Cardiotocography (CTG) is a commonly used technique of electronic fetal monitoring (EFM) for evaluating fetal well-being, which has the disadvantage of lower diagnostic rate caused by subjective factors. To reduce the rate of misdiagnosis and assist obstetricians in making accurate medical decisions, this paper proposed an intelligent assessment approach for analyzing fetal state based on fetal heart rate (FHR) signals. First, the FHR signals from the public database of the Czech Technical University-University Hospital in Brno (CTU-UHB) was preprocessed, and the comprehensive features were extracted. Then the optimal feature subset based on the k-nearest neighbor (KNN) genetic algorithm (GA) was selected. At last the classification using least square support vector machine (LS-SVM) was executed. The experimental results showed that the classification of fetal state achieved better performance using the proposed method in this paper: the accuracy is 91%, sensitivity is 89%, specificity is 94%, quality index is 92%, and area under the receiver operating characteristic curve is 92%, which can assist clinicians in assessing fetal state effectively.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • A Heart Rate Variability Analysis System for Short-term Applications

    In this paper, a heart rate variability analysis system is presented for short-term (5 min) applications, which is composed of an electrocardiogram signal acquisition unit and a heart rate variability analysis unit. The electrocardiogram signal acquisition unit adopts various digital technologies, including the low-gain amplifier, the high-resolution analog-digital converter, the real-time digital filter and wireless transmission etc. Meanwhile, it has the advantages of strong anti-interference capacity, small size, light weight, and good portability. The heart rate variability analysis unit is used to complete the R-wave detection and the analyses of time domain, frequency domain and non-linear indexes, based on the Matlab Toolbox. The preliminary experiments demonstrated that the system was reliable, and could be applied to the heart rate variability analysis at resting, motion states. etc.

    Release date: Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content