west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "hemodynamics" 24 results
  • Research progress on the hemodynamic mechanism and application of ankle pump exercise in preventing deep vein thrombosis

    Ankle pump exercise (APE) is one of the basic measures to prevent the formation of deep vein thrombosis, which has been widely recognized for its advantages of simplicity, safety, and ease of perform. However, there is still controversy regarding the frequency, duration, angle, position, and adjunctive exercise of APE. This article will review the hemodynamic and hemorheological effects of APE for the prevention of DVT, the current status of clinical application, and new advances in adjunctive APE, in order to provide methods and guidance for clinical staff.

    Release date:2023-08-24 10:24 Export PDF Favorites Scan
  • Anesthesia of lung transplant recipients

    [Abstract]The number of lung transplantation is gradually increasing worldwide, which brings new challenges to the multi-disciplinary team of lung transplantation. The prognosis of lung transplant recipients is seriously affected by the pathophysiological state of specific lung diseases and perioperative risk factors. It is of great significance for these patients to optimize perioperative management according to these factors. Recently, several expert consensus have been published regarding anesthesia management of lung transplantation. Based on the current evidence and clinical practice of West China Hospital, this review summarizes the key points of anesthesia management for lung transplant recipients to guide anesthesiologists' clinical practice.

    Release date:2023-01-18 06:43 Export PDF Favorites Scan
  • Intravascular Ultrasound-based Computational Fluid Dynamics Simulation of Arterial Vessel Wall Strain Distribution

    Quantitative measurement of strain distribution of arterial vessel walls due to pulsatile blood flow within the vascular lumen is valuable for evaluating the elasticity of arterial wall and predicting the evolution of plaques. The present paper shows that the three-dimensional (3D) strain distribution are estimated through uni-directional coupling for 3D vessel and blood models reconstructed from intravascular ultrasound (IVUS) images with the computational fluid dynamics (CFD) numerical simulation technique. The morphology of vessel wall and plaques as well as strain distribution can be visually displayed with pseudo-color coding.

    Release date: Export PDF Favorites Scan
  • Imaging and hemodynamic study of epilepsy induced by space-occupying intracranial arachnoid cyst

    Objective To investigate the correlation of intracranial arachnoid cyst (IAC) with epilepsy and the possible mechanism of seizure induced by IAC. Methods Patients with IAC, who were treated in West China Hospital of Sichuan University between January 2009 and January 2019, were included and divided into IAC with epilepsy group and IAC without epilepsy group according to whether they were diagnosed with epilepsy. We collected the IAC location information of all subjects after the establishment of a three-dimensional spatial coordinate system of MRI images. Computational fluid dynamics technology was used to establish a blood vessel model in cyst area and perform hemodynamic analysis basing on contrast-enhanced CT images. Results A total of 72 patients were enrolled, including 24 in the IAC with epilepsy group and 48 in the IAC without epilepsy group. There was no significant difference between the two groups in terms of sex, age, IAC location, the volumes or the maximum diameters of IAC (P>0.05). Consecutive areas formed by the seven high-risk areas found in the IAC with epilepsy group were located in the temporal area. The seven high-risk areas were simultaneous IAC location in 5 patients in the IAC with epilepsy group and in 1 patient in the IAC without epilepsy group, and the difference was statistically significant (χ2=5.114, P=0.024). Comparison of the hemodynamic parameters between the two types of vascular models revealed similar pressure changes and blood pressure parameters, with lower blood flow and higher mean vascular wall shear stress in the IAC with epilepsy group. Conclusions IAC may cause epilepsy by increasing adjacent blood vessel stenosis and blood vessel wall shear stress through cyst space-occupying effect. The most common location of IAC with epilepsy is the temporal area. The occupying effect of IAC should be considered in the location of epileptogenic foci before surgery for IAC patients with epilepsy.

    Release date:2022-12-23 09:29 Export PDF Favorites Scan
  • Research Progress on the Development and Regulation of Embryonic Hematopoietic Stem Cells

    Hematopoietic stem cells (HSCs) are tissue specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Recently, people have learned a lot about the embryonic HSCs on their development and homing. During their differentiation, HSCs are regulated by the transcription factors, such as Runx1 and Notch signaling pathway, etc. MicroRNAs also regulate the self-renewal and differentiation of hematopoietic stem/progenitor cells on the post-transcriptional levels. Since the onset of circulation, the formation of HSCs and their differentiation into blood cells, especially red blood cells, are regulated by the hemodynamic forces. It would be of great significance if we could treat hematologic diseases with induced HSCs in vitro on the basis of fully understanding of hemotopoietic stem cell development. This review is focused on the advances in the research of HSCs' development and regulation.

    Release date: Export PDF Favorites Scan
  • Influence of Angle Variation between Right Hepatic Vein and Inferior Vena Cava on Inferior Vena Cava Diaphragm

    Computational fluid dynamics was used to investigate the effect of the pathogenesis of membranous obstruction of inferior vena cava of Budd-Chiari syndrome with various angles between right hepatic vein and inferior vena cava. Mimics software was used to reconstruct the models from magnetic resonance imaging (MRI) angiograms of inferior vena cava, right hepatic vein, middle hepatic vein and left hepatic vein, and 3DMAX was used to construct the models of 30°, 60°, 90° and 120° angles between right hepatic vein and inferior vena cava, which was based on the reconstructed models.The model was conducted with clinical parameters in terms of wall shear stress distribution, static pressure distribution and blood velocity. The results demonstrated that the differences between wall shear stress and static pressure had statistical significance with various angles between right hepatic vein and inferior vena cava by SPSS. The pathogenesis of membranous obstruction of inferior vena cava had a correlation with the angles between right hepatic vein and inferior vena cava.

    Release date: Export PDF Favorites Scan
  • Effect of arterial flow on muscle atrophy

    This study analyzed the inherent relation between arterial blood mass flow and muscle atrophy of residual limb to provide some necessary information and theoretical support for the clinical rehabilitation of lower limb amputees. Three-dimensional arterial model reconstruction was performed on both intact side and residual limb of a unilateral transfemoral amputee who is the subject. Then hemodynamic calculation was carried out to comparatively analyze the mass flow state at each arterial outlet of both lower extremities. The muscle atrophy ratio of residual limb was calculated by measuring the cross-sectional area of bilateral muscles. Based on the blood supply relationship, the correlation between arterial blood flow reduction ratio and muscle atrophy ratio was discussed. The results showed that the mass flow of superficial femoral arteries and lateral circumflex femoral arteries severely reduced. Meanwhile rectus femoris, vastus lateralis and vastus medialis which were fed by these arteries showed great atrophy too. On the contrary, the mass flow of deep femoral arteries and medial femoral circumflex arteries slightly reduced. Meanwhile gracilis, adductor longus, long head of biceps which were fed by these arteries showed mild atrophy too. These results indicated that there might be a positive and promotion correlation between the muscle atrophy ratio and the blood mass flow reduction ratio of residual limb during rehabilitation.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Analysis and Computational Fluid Dynamics Simulation of Hemodynamic Influences Caused by Splenic Vein Thrombosis

    This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Research progress on cardiovascular hemodynamic assessment based on computational fluid dynamics

    Hemodynamics plays a vital role in the development and progression of cardiovascular diseases, and is closely associated with changes in morphology and function. Reliable detection of hemodynamic changes is essential to improve treatment strategies and enhance patient prognosis. The combination of computational fluid dynamics with cardiovascular imaging technology has extended the accessibility of hemodynamics. This review provides a comprehensive summary of recent developments in the application of computational fluid dynamics for cardiovascular hemodynamic assessment and a succinct discussion for potential future development.

    Release date:2024-02-20 03:09 Export PDF Favorites Scan
  • Construction of finite element model of left atrial diverticulum based on computed tomography and reverse engineering softwares

    This paper aims to explore the feasibility of building a finite element model of left atrial diverticulum (LAD) using reverse engineering software based on computed tomography (CT) images. The study was based on a three-dimensional cardiac CT images of a atrial fibrillation patient with LAD. The left atrium and LAD anatomical features were accurately reproduced by using Geomagic Studio 12 and Mimics 15 reverse engineering software. In addition, one left atrial model with LAD and one without LAD were created with ANSYS finite element analysis software, and the validity of the two models were verified. The results show that it is feasible to establish the LAD finite element model based on cardiac three-dimensional CT images using reverse engineering software. The results of this paper will lay a theoretical foundation for further hemodynamic analysis of LAD.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content