west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "long non-coding RNA" 24 results
  • Long non-coding RNA MACC1-AS1 mediates cisplatin resistance in gastric cancer through AKT/mTOR pathway

    Objective To investigate the role of long non-coding RNA metastasis-associated in colon cancer 1-antisense RNA (MACC1-AS1)in cisplatin resistant gastric cancer and its possible mechanism. Methods Human gastric cancer cell line BGC823 and cisplatin resistant gastric cancer cell line (BGC823/DDP) were selected as the research objects. BGC823/DDP cells were transfected and divided into negative control group (si-NC group, transfected with si-NC empty plasmid) and MACC1-AS1 gene silencing group (si-MACC1-AS1 group, transfected with si-MACC1-AS1 plasmid). The BGC823 cells were transfected and divided into positive control group (pcDNA-NC group, transfected with pcDNA-NC empty plasmid) and MACC1-AS1 gene overexpression group (pcDNA-MACC1-AS1 group, transfected with pcDNA-MACC1-AS1 plasmid). MTT was used to detect the inhibition and 50% inhibition concentration (IC50). Flow cytometry was used to detect apoptosis. Real-time fluorescence quantitative PCR was used to detect the mRNA expression levels of MACC1-AS1, B-lymphoma-2 gene (Bcl-2), Bcl-2 related X gene (Bax), mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), protein kinase B (AKT), and phosphorylated AKT (p-AKT). Western blot was used to detect the protein expression levels of Bax, Bcl-2, p-mTOR, mTOR, AKT, and p-AKT. Results The relative expression level of MACC1-AS1 mRNA in BGC823/DDP cells was higher than that in BGC823 gastric cancer cells (P<0.01). The relative expression level of MACC1-AS1 mRNA in the si-MACC1-AS1 group cells was lower than that in the si-NC group cells (P<0.01). The relative expression level of MACC1-AS1 mRNA in the pcDNA-MACC1-AS1 group cells was higher than that in the pcDNA-NC group cells (P<0.01). The cell growth inhibition rate and IC50 of the si-MACC1-AS1 group were higher than those of the si-NC group (P<0.01). The cell growth inhibition rate and IC50 of the pcDNA-MACC1-AS1 group were lower than those of the pcDNA-NC group (P<0.01). The mRNA and protein relative expression levels of Bcl-2, p-AKT/AKT and p-mTOR/mTOR in the pcDNA-MACC1-AS1 group were significantly higher than those in the pcDNA-NC group (P<0.01). The relative expression levels of Bax protein and mRNA in the pcDNA-MACC1-AS1 group were significantly lower than those in the pcDNA-NC group (P<0.01). The apoptosis rate of the pcDNA-MACC1-AS1 group was significantly lower than that of the pcDNA-NC group (P<0.01). The mRNA and protein relative expression levels of Bcl-2, p-AKT/AKT and p-mTOR/mTOR in the si-MACC1-AS1 group were significantly lower than those in the si-NC group (P<0.01). The relative expression levels of Bax protein and mRNA in the si-MACC1-AS1 group were significantly higher than those in the si-NC group (P<0.01). The apoptosis rate of the si-MACC1-AS1 group was significantly higher than that of the si-NC group (P<0.01). Conclusions MACC1-AS1 highly expresses in cisplatin resistant gastric cancer cells. Overexpression of MACC1-AS1 regulates AKT/mTOR pathway mediated apoptosis and enhances cisplatin resistance of gastric cancer cells.

    Release date:2022-05-13 03:20 Export PDF Favorites Scan
  • A new model combined with 3 kinds of lncRNAs can be used to predict the survivalrate of colon cancer before operation

    ObjectiveCombined with long non-coding RNA (lncRNA) to find a regression model that can be used to predict the survival rate of patients with colon cancer before operation.MethodsThe clinical information and gene expression information of patients with colon cancer were downloaded by using TCGA database. The differentially expressed lncRNAs in tumor and paracancerous tissues were screened out, and then combined with the clinical information of patients to construct Cox proportional hazard regression model.ResultsA total of 26 kinds of lncRNAs with statistical difference in gene expression between paracancerous tissues and tumor tissues were selected (P<0.05). Through repeated screening and comparison of prediction efficiency, the prediction model was finally selected, which was constructed by patients’ age, M stage, N stage, and three kinds of lncRNAs (ZFAS1, SNHG25, and SNHG7) gene expression level: age [HR=4.00, 95%CI: (1.48, 10.84), P=0.006], M stage [HR=3.96, 95%CI: (2.23, 7.04), P<0.001], N stage [HR=1.87, 95%CI: (1.24, 2.84), P=0.003], ZFAS1 gene expression level [HR=0.60, 95%CI: (0.41, 0.86), P=0.006], SNHG25 gene expression level [HR=0.85, 95%CI: (0.73, 1.00), P=0.045], and SNHG7 gene expression level [HR=2.32, 95%CI: (1.53, 3.52), P<0.001] were all independent risk factors for postoperative survival of patients with colon cancer. The area under the ROC curves for predicting 1, 3, and 5-year overall survival were 0.802, 0.828, and 0.771, respectiely, which had a good prediction ability.ConclusionThe predictive model constructed by the combination of ZFAS1, SNHG25, SNHG7 genes expression level with M stage, N stage, and age can better predict the overall survival rate of patients before operation, which can effectively guide clinical decision-making and choose the most suitable treatment method for patients.

    Release date:2020-12-30 02:01 Export PDF Favorites Scan
  • Progress in regulation of long non-coding RNA on malignant biological behavior of gallbladder cancer

    ObjectiveTo summarize the research progress of long non-coding RNA (lncRNA) in the regulation of malignant biological behavior of gallbladder cancer so as to provide references for its related research.MethodThe relevant literatures about studies of lncRNA in gallbladder cancer in recent years were reviewed.ResultsThe recent studies had shown that 19 lncRNAs associated with gallbladder cancer had played the important roles in regulating tumor cell proliferation, migration, invasion, apoptosis, “sponge” miRNAs, chemoresistance, and tumor metastasis. Among them, most lncRNAs tended to have carcinogenic properties, only a few had anticarcinogenic effect. Although the research suggested the mechanism and role of lncRNA to promote or inhibit the occurrence and development of gallbladder cancer, the current research on its mechanism was still limited. In addition, some lncRNAs were found to be specifically expressed in the serum of patients with gallbladder cancer, so which were expected to become biomarkers for tumor diagnosis and prognosis.ConclusionslncRNAs associated with gallbladder cancer have carcinogenic or anticarcinogenic effect, or chemoresistance. They play potential roles in diagnosis, prognosis, and (or) treatment of tumors, but molecular mechanisms of their effects are still limited.

    Release date:2020-12-25 06:09 Export PDF Favorites Scan
  • Developmental mechanism for calcific aortic valve disease

    Calcific aortic valve disease has been the most common heart valve disorder in western world, accompanying with the increase of morbidity in our country year by year. Several molecules and mechanisms are involved in the progression of aortic valve calcification, which intensify the complexity of this pathological process. It is known that inflammation, a key factor in many diseases, has its own role in the development of aortic valve calcification. It has been demonstrated that inflammation, one of the most important participants in this disorder, which may accelerate the local lesions in aortic valve via promoting the expression of osteogenic differentiation of associated factors or decreasing the level of protective molecules. Dyslipidemia is a traditional risk factor of cardiovascular events. However, it may induce or enhance the inflammatory response whereby facilitates the calcific lesions in aortic valve. Recently, several researches have illustrated that non-coding RNAs, a stimulative factor in the progression of malignant tumor, might play a role in the development of aortic valve calcification. MiRNA and lncRNA, the non-coding RNAs which regulate the expression of genes involved in inflammatory and osteogenic differentiation, are undeniable regulators of aortic valve calcification.

    Release date:2018-01-31 02:46 Export PDF Favorites Scan
  • Research progress of long non-coding RNA CCAT1 and gastric cancer

    ObjectiveTo understand the function of long non-coding RNA (lncRNA) colon cancer associated transcript-1 (CCAT1) and summarize its relationship with gastric cancer.MethodThe published literatures on the studies of lncRNA CCAT1 function and its relationship with gastric cancer were reviewed and analyzed.ResultsThe lncRNA CCAT1 exerted the negative regulation on the genes by binding to microRNAs (miR) as a competitive endogenous RNA, mediating chromatin circulation between the c-MYC promoter and its upstream enhancer, and promoted the expression of c-MYC gene. The recent studies had found that the CCAT1 could bind to the miR-219-1 and miR-490, thereby promoting the progress of gastric cancer. The expression of lncRNA CCAT1 in the gastric cancer tissues increased, which was obviously different from that in the paracancer tissues and normal tissues. The high expression of lncRNA CCAT1 was related to the tumor size, lymphatic metastasis and TNM stage.ConclusionsThe specific mechanism, intracellular signal transduction pathway and interaction mechanism between CCAT1 and other molecules involved in the progress of gastric cancer still need to be further explored. With the in-depth study of lncRNA, especially CCAT1, it may provide a broader prospect for the diagnosis and treatment of gastric cancer as a target of CCAT1.

    Release date:2020-09-23 05:27 Export PDF Favorites Scan
  • Association between polymorphism of long non-coding RNA maternally expressed gene 3and risk of gastric cancer

    Objective To explore relationship between long non-coding RNA maternally expressed gene 3 (MEG3) polymorphisms and risk of gastric cancer. Methods One hundred and seventy-two Han patients with gastric cancer (gastric cancer group) and 224 Han individuals for physical examination (control group) in the Yunnan Cancer Hospital from March 2013 to October 2017 were selected as subjects. The rs7158663 and rs4081134 polymorphisms of the MEG3 were genotyped by using a TaqMan technique. The associations between the 2 polymorphisms and the risk of the gastric cancer and its clinical features were analyzed using the SPSS software. Results The frequencies of the AG+AA genotype and the A allele of the MEG3 rs7158663 in the gastric cancer group were significantly higher than those in the control group using the GG genotype and G allele as a reference respectively [adjusted OR=1.71, 95%CI (1.14, 2.56), P=0.010; adjusted OR=1.58, 95%CI (1.15, 2.19), P=0.005] after the Chi-square test and the adjustment of age and gender. The frequencies of the AG+AA genotype and the A allele of the MEG3 rs4081134 had no significant differences between the gastric cancer group and the control group (P>0.017). Moreover, the polymorphisms of the MEG3 rs7158663 and rs4081134 were not associated with the clinical features of the gastric cancer (P>0.017). Conclusion MEG3 rs7158663 AG+AA genotype might be one of susceptibility gene of gastric cancer in Chinese Han population.

    Release date:2018-11-16 01:55 Export PDF Favorites Scan
  • Regulatory role of long non-coding RNA in peripheral nerve injury and neural regeneration

    ObjectiveTo summarize the regulatory role of long non-coding RNA (lncRNA) in peripheral nerve injury (PNI) and neural regeneration.MethodsThe characteristics and mechanisms of lncRNA were summarized and its regulatory role in PNI and neural regeneration were elaborated by referring to relevant domestic and foreign literature in recent years.ResultsNeuropathic pain and denervated muscle atrophy are common complications of PNI, affecting patients’ quality of life. Numerous lncRNAs are upregulated after PNI, which promote the progress of neuropathic pain by regulating nerve excitability and neuroinflammation. Several lncRNAs are found to promote the progress of denervated muscle atrophy. Importantly, peripheral nerve regeneration occurs after PNI. LncRNAs promote peripheral nerve regeneration through promoting neuronal axonal outgrowth and the proliferation and migration of Schwann cells.ConclusionAt present, the research on lncRNA regulating PNI and neural regeneration is still in its infancy. The specific mechanism remains to be further explored. How to achieve clinical translation of experimental results is also a major challenge for future research.

    Release date:2021-08-30 02:26 Export PDF Favorites Scan
  • Expression of long non-coding RNA FoxP4-AS1 in papillary thyroid carcinoma and its relationship with lymph node metastasis

    ObjectiveTo investigate relationship of long non-coding RNA FoxP4-AS1 expression with lymph node metastasis (LNM) of papillary thyroid carcinoma (PTC).MethodsReal time fluorescent quantitative polymerase chain reaction was used to detect the expression level of FoxP4-AS1 in 52 cases of PTC tissues and corresponding adjacent tissues, PTC cells (TPC-1, B-CPAP, K1), and normal thyroid follicular epithelial cells (Nthy-ori3-1). Univariate and multivariate analysis were used to identify the influencing factors of LNM in PTC. Receiver operating characteristic (ROC) curve was drawn to evaluate the predictive value of influencing factors of LNM in PTC.ResultsThe expression level of FoxP4-AS1 in the PTC tissues was significantly decreased as compared with the corresponding adjacent tissues (t=7.898, P<0.001), which in the different cells had statistical difference (F=29.866, P<0.001): expression levels in the TPC-1 and K1 cells were lower than Nthy-ori3-1 cells (P<0.05) and in the B-CPAP cells and Nthy-ori3-1 cells had no statistical difference (P>0.05) by multiple comparisons. Univariate analysis showed that the extraglandular invasion (χ2=4.205, P=0.040)and low expression of FoxP4-AS1 (χ2=7.144, P=0.008) were the influencing factors of LNM in PTC. Binary logistic regression analysis showed that extraglandular invasion [OR=9.455, 95%CI (1.120, 79.835), P=0.039] and low expression ofFoxP4-AS1[OR=5.437, 95%CI (1.488, 19.873), P=0.010] were risk factors for LNM of PTC. The area under the ROC curve ofFoxP4-AS1,extraglandular invasion alone, and combination of the two were 0.679, 0.656, and 0.785, respectively.ConclusionsFoxP4-AS1 is down-regulated in PTC. Low level of FoxP4-AS1 is a risk factor for LNM of PTC. Combined detection of expression level of FoxP4-AS1 and extraglandular invasion has a high predictive value for LNM of PTC.

    Release date:2021-05-14 09:39 Export PDF Favorites Scan
  • Expressed analysis and functional studies of differential expressed lncRNA genes associated with cholesterol gallstone

    ObjectiveTo explore the differential expressed lncRNA genes associated with formation of cholesterol gallstone, and analyze the biological functions of differential expressed lncRNA through bioinformatics.MethodsA total of 24 C57BL/6 mice were randomly divided into normal control group (n=8) and lithogenic group (n=16), which were treated with chow diets and lithogenic diets respectively for 5 weeks. After 5 weeks, mice of the lithogenic group were randomly divided into model control group (n=8) and ursodeoxycholic acid treatment group (n=8). Afterwards, mice of the normal control group were still fed with chow diets, mice of the model control group were fed with lithogenic diets, mice of the ursodeoxycholic acid treatment group were fed with ursodeoxycholic acid. After 2 weeks, collected liver tissues and gallbladder bile from the three groups, and observed gallbladder gross sample and analyzed lipids component of gallbladder bile, meanwhile detected the differential expressed lncRNA and analyzed the biological functions of differential expressed lncRNA through bioinformatics, including Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analysis.ResultsWe successfully constructed the mice model of cholesterol gallstone. Total cholesterol level of gallbladder in the model control group had significantly higher than those of the normal control group and ursodeoxycholic acid treatment group (P<0.05), yet there was no significant difference between the normal control group and ursodeoxycholic acid treatment group (P=0.59). The levels of total bile acid, total bilirubin, and direct bilirubin had no significant difference among the three groups (P>0.05). There were 49 kinds of common overlapped difference lncRNA between the ursodeoxycholic acid treatment group and the model control group through differential expression analysis of lncRNA in liver tissues of the mice in three groups. GO and KEGG path analysis were performed separately by differential expressed lncRNA, and 88 kinds of GO terms and 18 kinds of pathways were significantly enriched from the model control group and the normal control group, 205 kinds of GO terms and 20 kinds of pathways were significantly enriched from the ursodeoxycholic acid treatment group and the normal control group.ConclusionsUrsodeoxycholic acid has therapeutic effect for cholesterol gallstone. Differential expressed lncRNAs play an important regulatory role in the formation of cholesterol gallstone and the prevention of gallstone formation by ursodeoxycholic acid treatment, which further lay the foundation in discussing specific mechanism regulated by lncRNA.

    Release date:2019-06-05 04:24 Export PDF Favorites Scan
  • Recent advances of long non-coding RNA in tumor resistance by regulating autophagy

    ObjectiveTo summarize the recent advances in the relationship between long non-coding RNA (LncRNA) and tumor autophagy, autophagy and drug resistance regulation.MethodsReviewed the relevant literatures at home and abroad, and reviewed the recent research progress of LncRNA regulation of autophagy to affect tumor resistance.ResultsDrug resistance was a common problem in the process of anti-tumor therapy. Autophagy played an important role in the process of tumor resistance as an important mechanism to maintain cell homeostasis. Abnormal regulation of LncRNA could contribute to the occurrence and development of tumors, and could also mediate the resistance of tumor cells to anti-tumor drugs by promoting or inhibiting autophagy.ConclusionsLncRNA can mediate tumor autophagy in a positive or negative direction, and autophagy is a " double-edged sword” for tumor resistance. LncRNA may improve tumor resistance to drugs by regulating autophagy.

    Release date:2019-06-26 03:20 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content