west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "machine learning" 52 results
  • Progress in abdominal aortic aneurysm based on artificial intelligence and radiomics

    Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.

    Release date:2022-09-20 01:53 Export PDF Favorites Scan
  • Application of machine learning algorithm in clinical diagnosis and survival prognosis analysis of lung cancer

    Lung cancer is one of the tumors with the highest incidence rate and mortality rate in the world. It is also the malignant tumor with the fastest growing number of patients, which seriously threatens human life. How to improve the accuracy of diagnosis and treatment of lung cancer and the survival prognosis is particularly important. Machine learning is a multi-disciplinary interdisciplinary specialty, covering the knowledge of probability theory, statistics, approximate theory and complex algorithm. It uses computer as a tool and is committed to simulating human learning methods, and divides the existing content into knowledge structures to effectively improve learning efficiency and being able to integrate computer science and statistics into medical problems. Through the introduction of algorithm to absorb the input data, and the application of computer analysis to predict the output value within the acceptable accuracy range, identify the patterns and trends in the data, and finally learn from previous experience, the development of this technology brings a new direction for the diagnosis and treatment of lung cancer. This article will review the performance and application prospects of different types of machine learning algorithms in the clinical diagnosis and survival prognosis analysis of lung cancer.

    Release date:2022-06-24 01:25 Export PDF Favorites Scan
  • A study on predictive models for the efficacy of neoadjuvant chemoradiotherapy in locally advanced rectal cancer based on CT radiomics

    ObjectiveTo construct a multimodal imaging radiomics model based on enhanced CT features to predict tumor regression grade (TRG) in patients with locally advanced rectal cancer (LARC) following neoadjuvant chemoradiotherapy (NCRT). MethodsA retrospective analysis was conducted on the Database from Colorectal Cancer (DACCA) at West China Hospital of Sichuan University, including 199 LARC patients treated from October 2016 to October 2023. All patients underwent total mesorectal excision after NCRT. Clinical pathological information was collected, and radiomics features were extracted from CT images prior to NCRT. Python 3.13.0 was used for feature dimension reduction, and univariate logistic regression (LR) along with Lasso regression with 5-fold cross-validation were applied to select radiomics features. Patients were randomly divided into training and testing sets at a ratio of 7∶3 for machine learning and joint model construction. The model’s performance was evaluated using accuracy, sensitivity, specificity, and the area under the curve (AUC). Receiver operating characteristic curve (ROC), confusion matrices, and clinical decision curves (DCA) were plotted to assess the model’s performance. ResultsAmong the 199 patients, 155 (77.89%) had poor therapeutic outcomes, while 44 (22.11%) had good outcomes. Univariate LR and Lasso regression identified 8 clinical pathological features and 5 radiomic features, including 1 shape feature, 2 first-order statistical features, and 2 texture features. LR, support vector machine (SVM), random forest (RF), and eXtreme gradient boosting (XGBoost) models were established. In the training set, the AUC values of LR, SVM, RF, XGBoost models were 0.99, 0.98, 1.00, and 1.00, respectively, with accuracy rates of 0.94, 0.93, 1.00, and 1.00, sensitivity rates of 0.98, 1.00, 1.00, and 1.00, and specificity rates of 0.80, 0.67, 1.00, and 1.00, respectively. In the testing set, the AUC values of 4 models were 0.97, 0.92, 0.96, and 0.95, with accuracy rates of 0.87, 0.87, 0.88, and 0.90, sensitivity rates of 1.00, 1.00, 1.00, and 0.95, and specificity rates of 0.50, 0.50, 0.56, and 0.75. Among the models, the XGBoost model had the best performance, with the highest accuracy and specificity rates. DCA indicated clinical benefits for all 4 models. ConclusionsThe multimodal imaging radiomics model based on enhanced CT has good clinical application value in predicting the efficacy of NCRT in LARC. It can accurately predict good and poor therapeutic outcomes, providing personalized clinical surgical interventions.

    Release date:2025-02-24 11:16 Export PDF Favorites Scan
  • Prediction and characteristic analysis of cardiac thrombosis in patients with atrial fibrillation undergoing valve disease surgery based on machine learning

    ObjectiveTo evaluate the use of machine learning algorithms for the prediction and characterization of cardiac thrombosis in patients with valvular heart disease and atrial fibrillation. MethodsThis article collected data of patients with valvular disease and atrial fibrillation from West China Hospital of Sichuan University and its branches from 2016 to 2021. From a total of 2 515 patients who underwent valve surgery, 886 patients with valvular disease and atrial fibrillation were included in the study, including 545 (61.5%) males and 341 (38.5%) females, with a mean age of 55.62±9.26 years, and 192 patients had intraoperatively confirmed cardiac thrombosis. We used five supervised machine learning algorithms to predict thrombosis in patients. Based on the clinical data of the patients (33 features after feature screening), the 10-fold nested cross-validation method was used to evaluate the predictive effect of the model through evaluation indicators such as area under the curve, F1 score and Matthews correlation coefficient. Finally, the SHAP interpretation method was used to interpret the model, and the characteristics of the model were analyzed using a patient as an example. ResultsThe final experiment showed that the random forest classifier had the best comprehensive evaluation indicators, the area under the receiver operating characteristic curve was 0.748±0.043, and the accuracy rate reached 79.2%. Interpretation and analysis of the model showed that factors such as stroke volume, peak mitral E-wave velocity and tricuspid pressure gradient were important factors influencing the prediction. ConclusionThe random forest model achieves the best predictive performance and is expected to be used by clinicians as an aided decision-making tool for screening high-embolic risk patients with valvular atrial fibrillation.

    Release date:2022-09-20 08:57 Export PDF Favorites Scan
  • Machine learning models for analyzing valvular heart disease combined with atrial fibrillation using electronic health records

    Objective To establish a machine learning based framework to rapidly screen out high-risk patients who may develop atrial fibrillation (AF) from patients with valvular heart disease and provide the information related to risk prediction to clinicians as clinical guidance for timely treatment decisions. Methods Clinical data were retrospectively collected from 1 740 patients with valvular heart disease at West China Hospital of Sichuan University and its branches, including 831 (47.76%) males and 909 (52.24%) females at an average age of 54 years. Based on these data, we built classical logistic regression, three standard machine learning models, and three integrated machine learning models for risk prediction and characterization analysis of AF. We compared the performance of machine learning models with classical logistic regression and selected the best two models, and applied the SHAP algorithm to provide interpretability at the population and single-unit levels. In addition, we provided visualization of feature analysis results. ResultsThe Stack model performed best among all models (AF detection rate 85.6%, F1 score 0.753), while XGBoost outperformed the standard machine learning models (AF detection rate 71.9%, F1 score 0.732), and both models performed significantly better than the logistic regression model (AF detection rate 65.2%, F1 score 0.689). SHAP algorithm showed that left atrial internal diameter, mitral E peak flow velocity (Emv), right atrial internal diameter output per beat, and cardiac function class were the most important features affecting AF prediction. Both the Stack model and XGBoost had excellent predictive ability and interpretability. ConclusionThe Stack model has the highest AF detection performance and comprehensive performance. The Stack model loaded with the SHAP algorithm can be used to screen high-risk patients for AF and reveal the corresponding risk characteristics. Our framework can be used to guide clinical intervention and monitoring of AF.

    Release date:2022-08-25 08:52 Export PDF Favorites Scan
  • Application and research progress of artificial intelligence technology in trauma treatment

    Objective To review the application and research progress of artificial intelligence (AI) technology in trauma treatment. MethodsThe recent research literature on the application of AI and related technologies in trauma treatment was reviewed and summarized in terms of prehospital assistance, in-hospital emergency care, and post-traumatic stress disorder risk regression prediction, meanwhile, the development trend of AI technology in trauma treatment were outlooked. Results The AI technology can rapidly analyze and manage large amount of clinical data to help doctors identify patients’ situation of trauma and predict the risk of possible complications more accurately. The application of AI technology in surgical assistance and robotic operations can achieve precise surgical plan and treatment, reduce surgical risks, and shorten the operation time, so as to improve the efficiency and long-term effectiveness of the trauma treatment. ConclusionThere is a promising future for the application of AI technology in the trauma treatment. However, it is still in the stage of exploration and development, and there are many difficulties of historical data bias, application condition limitations, as well as ethical and moral issues need to be solved.

    Release date:2023-12-12 05:05 Export PDF Favorites Scan
  • Research progress on artificial intelligence application in the perioperative period of cardiovascular surgery

    With the advancement and development of computer technology, the medical decision-making system based on artificial intelligence (AI) has been widely applied in clinical practice. In the perioperative period of cardiovascular surgery, AI can be applied to preoperative diagnosis, intraoperative, and postoperative risk management. This article introduces the application and development of AI during the perioperative period of cardiovascular surgery, including preoperative auxiliary diagnosis, intraoperative risk management, postoperative management, and full process auxiliary decision-making management. At the same time, it explores the challenges and limitations of the application of AI and looks forward to the future development direction.

    Release date:2024-12-25 06:06 Export PDF Favorites Scan
  • Exploration of SMARCA4-dNSCLC-related prognostic risk model and tumor immune microenvironment based on spatial transcriptomics and machine learning

    ObjectiveTo analyze the correlation between the molecular biological information of SMARCA4-deficient non-small cell lung cancer (SMARCA4-dNSCLC) and its clinical prognosis, and to explore the spatial features and molecular mechanisms of interactions between cells in the tumor microenvironment (TME) of SMARCA4-dNSCLC. MethodsUsing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), this study conducted functional enrichment analysis on differentially expressed genes (DEGs) in SMARCA4-dNSCLC and depicted its genomic variation landscape. Through weighted gene co-expression network analysis (WGCNA) and a combination of 10 different machine learning algorithms, patients in the training group were divided into a low-risk group and a high-risk group based on a median risk score (RiskScore). A corresponding prognostic prediction model was established, and on this basis, a nomogram was constructed to predict the 1, 3, and 5-year survival rates of patients. K-M survival curves, receiver operating characteristic (ROC) curves, and time-dependent ROC curves were drawn to evaluate the predictive ability of the model. External datasets from GEO further validated the prognostic value of the prediction model. In addition, we also evaluated the immunological characteristics of the TME of the prognostic model. Finally, using single-cell RNA sequencing (scRNA-seq) and spatial transcriptome (ST), we explored the spatial features of interactions between cells in the TME of SMARCA4-dNSCLC, intercellular communication, and molecular mechanisms. ResultsA total of 56 patients were included in the training group, including 38 males and 18 females, with a median age of 62 (56-70) years. There were 28 patients in both the low-risk and high-risk groups. A total of 474 patients were included in the training group, including 265 males and 209 females, with a median age of 65 (58-70) years. A risk score model composed of 8 prognostic feature genes (ELANE, FSIP2, GFI1B, GPR37, KRT81, RHOV, RP1, SPIC) was established. Compared with patients in the low-risk group, those in the high-risk group showed a more unfavorable prognostic outcome. Immunological feature analysis revealed differences in the infiltration of various immune cells between the low-risk and high-risk groups. ScRNA-seq and ST analyses found that interactions between cells were mainly through macrophage migration inhibitory factor (MIF) signaling pathways (MIF-CD74+CXCR4 and MIF-CD74+CD44) via ligand-receptor pairs, while also describing the niche interactions of the MIF signaling pathway in tissue regions. ConclusionThe 8-gene prognostic model constructed in this study has certain predictive accuracy in predicting the survival of SMARCA4-dNSCLC. Combining the ScRNA-seq and ST analyses, cell-to-cell crosstalk and spatial niche interaction may occur between cells in the TME via the MIF signaling pathway (MIF-CD74+CXCR4 and MIF-CD74+CD44).

    Release date: Export PDF Favorites Scan
  • Research on electroencephalogram specifics in patients with schizophrenia under cognitive load

    Cognitive impairment is one of the three primary symptoms of schizophrenic patients and shows important value in early detection and warning for high-risk individuals. To study the specifics of electroencephalogram (EEG) in patients with schizophrenia under the cognitive load, we collected EEG signals from 17 schizophrenic patients and 19 healthy controls, extracted signals of each band based on wavelet transform, calculated the characteristics of nonlinear dynamic and functional brain networks, and automatically classified the two groups of people by using a machine learning algorithm. Experimental results indicated that the correlation dimension and sample entropy showed significant differences in α, β, θ, and γ rhythm of the Fp1 and Fp2 electrodes between groups under the cognitive load. These results implied that the functional disruptions in the frontal lobe might be the important factors of cognitive impairments in schizophrenic patients. Further results of the automatic classification analysis indicated that the combination of nonlinear dynamics and functional brain network properties as the input characteristics of the classifier showed the best performance, with the accuracy of 76.77%, sensitivity of 72.09%, and specificity of 80.36%. The results of this study demonstrated that the combination of nonlinear dynamics and function brain network properties may be potential biomarkers for early screening and auxiliary diagnosis of schizophrenia.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
  • Construction of a prediction model for postoperative recurrence of granulomatous mastitis in the mass stage based on machine learning

    ObjectiveTo predict the risk factors affecting postoperative recurrence of granulomatous lobular mastitis (GLM) in the mass stage by machine learning algorithm, and to provide a reference for the early identification and prevention of postoperative recurrence of GLM in the mass stage. MethodsThe electronic medical records and follow-up data of patients with GLM in the Department of Breast Disease Unit, the First Affiliated Hospital of Henan University of Traditional Chinese Medicine from October 2020 to January 2023 were selected. A total of 340 patients with GLM in the mass stage who met the inclusion and exclusion criteria were selected as the research subjects. According to whether the patients relapsed after surgery, they were divided into recurrence group and non-recurrence group. The collected cases were randomly divided into training set and test set according to the ratio of 7:3. In the training set, the recurrence prediction model was constructed by using traditional logistic regression and three machine learning algorithms: artificial neural network, random forest and XGBoost (extrem gradient boosting). In the test set, the performance of the model was evaluated by sensitivity, specificity, accuracy,positive predictive value, negative predictive value, F1 value and area under the curve (AUC) value. The Shapley Additive exPlanation (SHAP) method was used to explore the important variables that affect the optimal model in identifying postoperative recurrence in the GLM mass phase. The optimal risk cutoff value of the prediction model was determined by the Youden index. Based on this, the postoperative patients in the GLM mass phase of the external test set were divided into high-risk and low-risk groups. ResultsA total of 392 patients who met the GLM mass stage were included, and 52 cases were excluded according to the exclusion criteria, and 340 cases were finally included, including 60 cases in the recurrence group and 280 cases in the non-recurrence group. Based on the results of univariate analysis, correlation analysis and clinically meaningful influencing factors, 12 non-zero coefficient characteristic variables were screened for the construction of the prediction model, and these 12 characteristic variables included other disease history, number of miscarriages, breastfeeding duration of the affected breast, history of milk stasis, lesion location, nipple indentation, fluctuation sensation, low-density lipoprotein, testosterone, previous antibiotic therapy, previous oral hormone medication, and perioperative traditional Chinese medicine treatment duration. The logistic regression prediction model, artificial neural network, random forest and XGBoost prediction models were constructed, and the results showed that the accuracy, positive predictive value and negative predictive value of the four prediction models were all >75%, among which the XGBoost model had the best performance, with accuracy, specificity, sensitivity, AUC, positive predictive value, negative predictive value and F1 values of 0.93, 0.99, 0.65, 0.87, 0.92, 0.93 and 0.76, respectively. SHAP method found that the duration of traditional Chinese medicine treatment during perioperative period, the duration of breast-feeding on the affected side, low density lipoprotein, testosterone and previous hormone drugs were the top five factors affecting XGBoost model to identify postoperative recurrence of GLM in mass stage. ConclusionsCompared with the traditional Logistic regression prediction model, the models based on machine learning for identifying postoperative recurrence in the GLM mass phase showed better performance, among which the XGBoost model performed best. Targeted preventive measures can be given based on the above risk factors to improve the postoperative prognosis of the GLM mass phase.

    Release date:2024-12-27 11:26 Export PDF Favorites Scan
6 pages Previous 1 2 3 ... 6 Next

Format

Content