Objective To review the progress of artificial intelligence (AI) and radiomics in the study of abdominal aortic aneurysm (AAA). Method The literatures related to AI, radiomics and AAA research in recent years were collected and summarized in detail. Results AI and radiomics influenced AAA research and clinical decisions in terms of feature extraction, risk prediction, patient management, simulation of stent-graft deployment, and data mining. Conclusion The application of AI and radiomics provides new ideas for AAA research and clinical decisions, and is expected to suggest personalized treatment and follow-up protocols to guide clinical practice, aiming to achieve precision medicine of AAA.
With the development of science and technology, artificial intelligence is gradually integrated into every aspect of daily life and the medical field is no exception. Cardiovascular diseases, as the first killer to global health, is the focus of new technologies and methods. In this study, the application of computer vision, natural language processing, robotics and machine learning in cardiovascular disease studies were reviewed and prospected, in order to promote the development for new technologies and applications in the future.
With the advancement and development of computer technology, the medical decision-making system based on artificial intelligence (AI) has been widely applied in clinical practice. In the perioperative period of cardiovascular surgery, AI can be applied to preoperative diagnosis, intraoperative, and postoperative risk management. This article introduces the application and development of AI during the perioperative period of cardiovascular surgery, including preoperative auxiliary diagnosis, intraoperative risk management, postoperative management, and full process auxiliary decision-making management. At the same time, it explores the challenges and limitations of the application of AI and looks forward to the future development direction.
With the increasing availability of clinical and biomedical big data, machine learning is being widely used in scientific research and academic papers. It integrates various types of information to predict individual health outcomes. However, deficiencies in reporting key information have gradually emerged. These include issues like data bias, model fairness across different groups, and problems with data quality and applicability. Maintaining predictive accuracy and interpretability in real-world clinical settings is also a challenge. This increases the complexity of safely and effectively applying predictive models to clinical practice. To address these problems, TRIPOD+AI (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis+artificial intelligence) introduces a reporting standard for machine learning models. It is based on TRIPOD and aims to improve transparency, reproducibility, and health equity. These improvements enhance the quality of machine learning model applications. Currently, research on prediction models based on machine learning is rapidly increasing. To help domestic readers better understand and apply TRIPOD+AI, we provide examples and interpretations. We hope this will support researchers in improving the quality of their reports.
Objective To evaluate the predictive effect of three machine learning methods, namely support vector machine (SVM), K-nearest neighbor (KNN) and decision tree, on the daily number of new patients with ischemic stroke in Chengdu. Methods The numbers of daily new ischemic stroke patients from January 1st, 2019 to March 28th, 2021 were extracted from the Third People’s Hospital of Chengdu. The weather and meteorological data and air quality data of Chengdu came from China Weather Network in the same period. Correlation analyses, multinominal logistic regression, and principal component analysis were used to explore the influencing factors for the level of daily number of new ischemic stroke patients in this hospital. Then, using R 4.1.2 software, the data were randomly divided in a ratio of 7∶3 (70% into train set and 30% into validation set), and were respectively used to train and certify the three machine learning methods, SVM, KNN and decision tree, and logistic regression model was used as the benchmark model. F1 score, the area under the receiver operating characteristic curve (AUC) and accuracy of each model were calculated. The data dividing, training and validation were repeated for three times, and the average F1 scores, AUCs and accuracies of the three times were used to compare the prediction effects of the four models. Results According to the accuracies from high to low, the prediction effects of the four models were ranked as SVM (88.9%), logistic regression model (87.5%), decision tree (85.9%), and KNN (85.1%); according to the F1 scores, the models were ranked as SVM (66.9%), KNN (62.7%), decision tree (59.1%), and logistic regression model (57.7%); according to the AUCs, the order from high to low was SVM (88.5%), logistic regression model (87.7%), KNN (84.7%), and decision tree (71.5%). Conclusion The prediction result of SVM is better than the traditional logistic regression model and the other two machine learning models.
Objective To identify genes of lipopolysaccharide (LPS) -induced acute lung injury (ALI) in mice base on bioinformatics and machine learning. Methods The acute lung injury dataset (GSE2411, GSE111241 and GSE18341) were download from the Gene Expression Database (GEO). Differential gene expression analysis was conducted. Gene ontology (GO) analysis, KEGG pathway analysis, GSEA enrichment analysis and protein-protein interaction analysis (PPI) network analysis were performed. LASSO-COX regression analysis and Support Vector Machine Expression Elimination (SVM-RFE) was utilized to identify key biomarkers. Receiver operator characteristic curve was used to evaluate the diagnostic ability. Validation was performed in GSE18341. Finally, CIBERSORT was used to analyze the composition of immune cells, and immunocorrelation analysis of biomarkers was performed. Results A total of 29 intersection DEGs were obtained after the intersection of GSE2411 and GSE111241 differentially expressed genes. Enrichment analysis showed that differential genes were mainly involved in interleukin-17, cytokine - cytokine receptor interaction, tumor necrosis factor and NOD-like receptor signaling pathways. Machine learning combined with PPI identified Gpx2 and Ifi44 were key biomarkers. Gpx2 is a marker of ferroptosis and Ifi44 is an type I interferon-induced protein, both of which are involved in immune regulation. Immunocorrelation analysis showed that Gpx2 and Ifi44 were highly correlated with Neutrophils, TH17 and M1 macrophage cells. Conclusion Gpx2 and Ifi44 have potential immunomodulatory abilities, and may be potential biomarkers for predicting and treating ALI in mince.
ObjectiveTo evaluate the use of machine learning algorithms for the prediction and characterization of cardiac thrombosis in patients with valvular heart disease and atrial fibrillation. MethodsThis article collected data of patients with valvular disease and atrial fibrillation from West China Hospital of Sichuan University and its branches from 2016 to 2021. From a total of 2 515 patients who underwent valve surgery, 886 patients with valvular disease and atrial fibrillation were included in the study, including 545 (61.5%) males and 341 (38.5%) females, with a mean age of 55.62±9.26 years, and 192 patients had intraoperatively confirmed cardiac thrombosis. We used five supervised machine learning algorithms to predict thrombosis in patients. Based on the clinical data of the patients (33 features after feature screening), the 10-fold nested cross-validation method was used to evaluate the predictive effect of the model through evaluation indicators such as area under the curve, F1 score and Matthews correlation coefficient. Finally, the SHAP interpretation method was used to interpret the model, and the characteristics of the model were analyzed using a patient as an example. ResultsThe final experiment showed that the random forest classifier had the best comprehensive evaluation indicators, the area under the receiver operating characteristic curve was 0.748±0.043, and the accuracy rate reached 79.2%. Interpretation and analysis of the model showed that factors such as stroke volume, peak mitral E-wave velocity and tricuspid pressure gradient were important factors influencing the prediction. ConclusionThe random forest model achieves the best predictive performance and is expected to be used by clinicians as an aided decision-making tool for screening high-embolic risk patients with valvular atrial fibrillation.
Cardiovascular diseases are the leading cause of death and their diagnosis and treatment rely heavily on the variety of clinical data. With the advent of the era of medical big data, artificial intelligence (AI) has been widely applied in many aspects such as imaging, diagnosis and prognosis prediction in cardiovascular medicine, providing a new method for accurate diagnosis and treatment. This paper reviews the application of AI in cardiovascular medicine.
In this paper, a deep learning method has been raised to build an automatic classification algorithm of severity of chronic obstructive pulmonary disease. Large sample clinical data as input feature were analyzed for their weights in classification. Through feature selection, model training, parameter optimization and model testing, a classification prediction model based on deep belief network was built to predict severity classification criteria raised by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We get accuracy over 90% in prediction for two different standardized versions of severity criteria raised in 2007 and 2011 respectively. Moreover, we also got the contribution ranking of different input features through analyzing the model coefficient matrix and confirmed that there was a certain degree of agreement between the more contributive input features and the clinical diagnostic knowledge. The validity of the deep belief network model was proved by this result. This study provides an effective solution for the application of deep learning method in automatic diagnostic decision making.
Radiotherapy is one of the main treatments for tumor with increasingly high request for technique precision and the equipment stability. Machine learning may bring radiotherapy simplicity, individualization and precision, and may improve the automatic level of planning and quality assurance. Based on the process of radiotherapy, this paper reviews the applications and researches on machine learning, with an emphasis on deep learning, and proposes the prospects in the following aspects: segmentation of normal tissue and tumor, planning, treatment delivery, quality assurance and prognosis prediction.