Pulmonary arterial hypertension (PAH) is a fatal and complex disease characterized by multifactorial involvement in pulmonary vascular remodeling, leading to heart failure. It is difficult to treat and has a poor long-term prognosis. Recent studies highlight the significant role of epigenetic modulation in the pathophysiological progression of PAH, offering new therapeutic approaches to improve clinical outcomes. This article summarizes the role of epigenetic modulation in the development and progression of PAH, focusing on deoxyribonucleic acid methylation, ribonucleic acid methylation, histone modifications, and non-coding ribonucleic acid, in order to understand the role of epigenetic modulation in PAH and identifying new evaluation indexes and therapeutic targets, thereby improving the prognosis of PAH.
Objective To investigate the effects of DNA methyltransferase inhibitor (DNMTi) and histone deacetylase inhibitor (HDCAi) on expression of E-cadherin gene and invasiveness of cholangiocarcinoma cell. Methods According to different treatment, the QBC939 cells were divided into four groups: blank control group, hydralazine group, valproic acid group and hydralazine and valproic acid combined group. After 48 h, the expression of E-cadherin was evaluated by reverse transcription-PCR (RT-PCR), mehtylation specific PCR (MSP) and Western blot, the invasiveness of QBC939 cells was evaluated by Transwell method. Results There was no expression of E-cadherin mRNA and protien in blank control group and valproic acid group. The expressions of E-cadherin mRNA and protien in hydralazine and valproic acid combined group were higher than those in hydralazine group ( P < 0.01), while the invasiveness of QBC939 cells of hydralazine and valproic acid combined group was much lower than that of blank control group, hydralazine group and valproic acid group ( P < 0.01). Conclusion DNMTi and HDACi can synergistically re-express E-cadherin gene and weaken the invasiveness of QBC939 cell, which plays an important part in treatment of cholangiocarcinoma.
The regulation of epigenetics on bone marrow mesenchymal stem cells (BMSCs) has been a research hot spot in medical area. This paper mainly summarizes the progress of the regulation of DNA methylation, histone acetylation, small interfering RNA (siRNA) induced gene silence and microRNA (miRNA) on BMSCs. Our analysis shows that the regulation of epigenetics on BMSCs plays a significant role in the repair of bone tissue, nervous tissue and cardiac muscle.
ObjectiveRecent advancements in the researches on cholangiocarcinoma (CC) related genes methylation in CC were reviewed and the clinical significances of aberrant DNA methylation for the diagnosis and treatment of CC were discussed. MethodsRelevant literatures about the relation between CC-related genes methylation and CC published recently were collected and reviewed. ResultsThe genesis of CC resulted from abnormal expressions of many genes. Many researches had shown that the abnormal methylation of CC-related genes had a close relation with CC. Epigenetic alteration had been acknowledged as an important mechanism contributing to early CC carcinogenesis. ConclusionsAbnormal methylation of CC-related genes is related with CC. The detection of CC-related genes methylation might provide new specific biomarkers for early noninvasive diagnosis of this disease. Using epigenetic agents such as azacytidine to modulate the activities of DNA methyltransferase and reverse the methylation status of CC-related gene might be an attractive strategy for future treatment of CC, which could be combined with conventional therapies.
ObjectiveTo explore the accuracy of machine learning algorithms based on SHOX2 and RASSF1A methylation levels in predicting early-stage lung adenocarcinoma pathological types. MethodsA retrospective analysis was conducted on formalin-fixed paraffin-embedded (FFPE) specimens from patients who underwent lung tumor resection surgery at Affiliated Hospital of Nantong University from January 2021 to January 2023. Based on the pathological classification of the tumors, patients were divided into three groups: a benign tumor/adenocarcinoma in situ (BT/AIS) group, a minimally invasive adenocarcinoma (MIA) group, and an invasive adenocarcinoma (IA) group. The methylation levels of SHOX2 and RASSF1A in FFPE specimens were measured using the LungMe kit through methylation-specific PCR (MS-PCR). Using the methylation levels of SHOX2 and RASSF1A as predictive variables, various machine learning algorithms (including logistic regression, XGBoost, random forest, and naive Bayes) were employed to predict different lung adenocarcinoma pathological types. ResultsA total of 272 patients were included. The average ages of patients in the BT/AIS, MIA, and IA groups were 57.97, 61.31, and 63.84 years, respectively. The proportions of female patients were 55.38%, 61.11%, and 61.36%, respectively. In the early-stage lung adenocarcinoma prediction model established based on SHOX2 and RASSF1A methylation levels, the random forest and XGBoost models performed well in predicting each pathological type. The C-statistics of the random forest model for the BT/AIS, MIA, and IA groups were 0.71, 0.72, and 0.78, respectively. The C-statistics of the XGBoost model for the BT/AIS, MIA, and IA groups were 0.70, 0.75, and 0.77, respectively. The naive Bayes model only showed robust performance in the IA group, with a C-statistic of 0.73, indicating some predictive ability. The logistic regression model performed the worst among all groups, showing no predictive ability for any group. Through decision curve analysis, the random forest model demonstrated higher net benefit in predicting BT/AIS and MIA pathological types, indicating its potential value in clinical application. ConclusionMachine learning algorithms based on SHOX2 and RASSF1A methylation levels have high accuracy in predicting early-stage lung adenocarcinoma pathological types.
ObjectiveTo summarize the current research status of the relationship between DNA methylation and liver regeneration.MethodThe related literatures at home and abroad were searched to review the studies on relationships between the methylation level of liver cells, regulation of gene expression, and methylation related proteins and liver regeneration.ResultsThe DNA methylation was an important epigenetic regulation method in vivo and its role in the liver regeneration had been paid more and more attentions in recent years. The existing studies had found the epigenetic phenomena during the liver regeneration such as the genomic hypomethylation, methylation changes of related proliferating genes and DNA methyltransferase and UHRF1 regulation of the liver regeneration.ConclusionsThere are many relationships between DNA methylation and liver regeneration. Regulation of liver regeneration from DNA methylation level is expected to become a reality in the near future.
ObjectiveTo summarize mechanism of DNA methylation and histone methylation in liver fibrosis.MethodThe literatures on the DNA methylation and histone methylation during the liver fibrosis were reviewed and analyzed.ResultsThe DNA methylation and histone methylation were the important components of epigenetics. The up-regulation or down-regulation of genes during the liver fibrosis leaded to the activation or inactivation of the subsequent pathways. For example, the PTEN, SEPT9, Smad7, etc. were hypermethylated and the expressions were decreased in the liver fibrosis. The Spp1 was hypomethylated and the expression was increased in the liver fibrosis.ConclusionsMethylation affects expression of genes by altering epigenetics of genes. Systematic and in-depth study of role and mechanism of methylation in liver diseases provides a new direction and locations for some target treatments for liver disease.
ObjectiveTo explore the role of DNA methylation in the pathogenesis of cholangiocarcinoma and its progress as a therapeutic target for cholangiocarcinoma.MethodThe relevant literatures at home and abroad in recent years about the DNA methylation and cholangiocarcinoma were reviewed.ResultsMethylation is a frequent event in cholangiocarcinoma and effect the occurrence and development of cholangiocarcinogenesis. DNA methylation inhibitors reactivate tumor suppressor genes.ConclusionsDNA methylation is closely related to the cholangiocarcinogenesis. Despite there is no effective clinical therapeutics and diagnosis at present, with further study, DNA methylation is expected to be one of the new target to treatment and diagnosis this disease.
Diabetic retinopathy (DR) is one of the most common microvascular complications of diabetes, characterized by high blindness rates and a severe impact on patients' quality of life. Despite adequate glycemic control, some patients exhibit persistent progression of retinal microvascular damage, known as the "metabolic memory" phenomenon. Studies have revealed that the essence of this phenomenon is the sustained expression of epigenetic reprogramming induced by metabolic stress, in which abnormal mitochondrial DNA (mtDNA) methylation plays a pivotal role. Metabolic abnormalities such as hyperglycemia, hyperhomocysteinemia, and hyperlipidemia can alter mtDNA methylation patterns, triggering cascading pathological processes including oxidative stress, chronic inflammation, and neurovascular network disorders, remodeling mitochondrial energy metabolism, and promoting the evolution of DR from subclinical compensatory stage to irreversible structural damage. Abnormal mtDNA methylation serves as a hallmark of metabolic memory and a core driver of microvascular lesions, providing an important theoretical basis for in-depth analysis of metabolic memory mechanisms and exploration of DR intervention strategies. Current research needs to further elucidate its role in DR. Future efforts require integration of multi-dimensional epigenetic biomarkers, precise intervention approaches, and clinical translational research to advance the early diagnosis and individualized treatment of DR.
Objective To investigate the expression of the histone deacetylases 1( HDAC1) and the level of whole histone acetylation and methylation in lung T cells of asthmatic rats, and investigate their role in the pathogenesis of asthma.Methods Sixteen wistar rats were randomly divided into a control group and an asthma group( n =8 in each group) . The rats was sensitized with ovalbumin( OVA) and challenged with aerosol OVA to establish asthma model. The asthmatic ratmodel was confirmed by measurement of pulmonary function, histochemical staining, HE staining, and the levels of interleukin-4 ( IL-4 ) , interferon-gamma ( IFN-γ) and immunoglobulin E( IgE) in serum and bronchoalveolar lavage fluid ( BALF) . T cells were isolated fromrat lungs and the purity was identified. The expression of the HDAC1, the level of whole histone H3 and H4 acetylation, and whole H3K9 dimethylation were analyzed by Western blot in lung T cells. Results Compared with the control group, the protein expression of HDAC1 was significantly lower( 0. 465±0. 087 vs 0. 790 ±0. 076, P lt;0. 05) in lung T cells of the asthma group. No significant differences werefound in regard to the level of whole histone H3 and H4 acetylation and whole H3K9 dimethylation betweenthe two groups. Conclusions HDAC1 in lung T cells may be involved in the pathogenesis of asthma.Histone modification by HDAC1 may be a specific eventwith gene transcription which may not be associated with asthma.