west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "near-infrared" 18 results
  • Progress of autofluorescence in the study of parathyroid gland

    Objective To summarize the development, clinical application, advantages and disadvantages, and future prospects of parathyroid autofluorescence in recent years. MethodThe literatures related to the research progress of parathyroid autofluorescence in recent years were searched, and launched a specific discussion. Results Autofluorescence of parathyroid gland was still in its infancy at home and abroad. The existing studies had shown that this technique was superior to visual recognition and could reduce the incidence of postoperative complications. Autofluorescence technology had shown some advantages in identifying parathyroid gland during operation, and its mechanism research and related equipment improvement should be focused in the future. ConclusionAutofluorescence technique is of great value in the identification of parathyroid glands in patients undergoing thyroidectomy or parathyroidectomy.

    Release date:2023-02-24 05:15 Export PDF Favorites Scan
  • Application of functional near-infrared spectroscopy in stroke-related neurological function research

    Functional near-infrared spectroscopy (fNIRS), as an emerging brain imaging technique, has gradually become an important tool for stroke-related neurological function research due to its advantages of non-invasiveness, exercise tolerance, and portability. This article summarizes the application of fNIRS in evaluating neurological dysfunction, identifying functional injury sites, and monitoring rehabilitation outcomes, analyzes the advantages and disadvantages demonstrated in research and explores future improvement directions to promote further development of fNIRS in clinical applications.

    Release date:2025-07-29 05:02 Export PDF Favorites Scan
  • Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI.2011 1 0292374.1.

    Release date: Export PDF Favorites Scan
  • An overview on sleep research based on functional near infrared spectroscopy

    Sleep is a complex physiological process of great significance to physical and mental health, and its research scope involves multiple disciplines. At present, the quantitative analysis of sleep mainly relies on the “gold standard” of polysomnography (PSG). However, PSG has great interference to the human body and cannot reflect the hemodynamic status of the brain. Functional near infrared spectroscopy (fNIRS) is used in sleep research, which can not only meet the demand of low interference to human body, but also reflect the hemodynamics of brain. Therefore, this paper has collected and sorted out the related literatures about fNIRS used in sleep research, concluding sleep staging research, clinical sleep monitoring research, fatigue detection research, etc. This paper provides a theoretical reference for scholars who will use fNIRS for fatigue and sleep related research in the future. Moreover, this article concludes the limitation of existing studies and points out the possible development direction of fNIRS for sleep research, in the hope of providing reference for the study of sleep and cerebral hemodynamics.

    Release date:2022-02-21 01:13 Export PDF Favorites Scan
  • Realization of non-invasive blood glucose detector based on nonlinear auto regressive model and dual-wavelength

    The use of non-invasive blood glucose detection techniques can help diabetic patients to alleviate the pain of intrusive detection, reduce the cost of detection, and achieve real-time monitoring and effective control of blood glucose. Given the existing limitations of the minimally invasive or invasive blood glucose detection methods, such as low detection accuracy, high cost and complex operation, and the laser source's wavelength and cost, this paper, based on the non-invasive blood glucose detector developed by the research group, designs a non-invasive blood glucose detection method. It is founded on dual-wavelength near-infrared light diffuse reflection by using the 1 550 nm near-infrared light as measuring light to collect blood glucose information and the 1 310 nm near-infrared light as reference light to remove the effects of water molecules in the blood. Fourteen volunteers were recruited for in vivo experiments using the instrument to verify the effectiveness of the method. The results indicated that 90.27% of the measured values of non-invasive blood glucose were distributed in the region A of Clarke error grid and 9.73% in the region B of Clarke error grid, all meeting clinical requirements. It is also confirmed that the proposed non-invasive blood glucose detection method realizes relatively ideal measurement accuracy and stability.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Effects of different cognitive tasks in dual-task training on task performance and brain activation in convalescent period stroke patients

    Objective To observe the effects of selecting different cognitive tasks during dual-task stepping training assisted by a pelvic weight support rehabilitation robot on cerebral cortex activation and task performance in convalescent period stroke patients. Methods Convalescent period stroke patients treated at Huashan Hospital, Fudan University between June 2023 and July 2024 were selected. Patients were recruited and conducted a self-controlled study. Patients were subjected to a self controlled study and received AB regimen training. The plan A underwent dual-task verbal fluency-stepping training assisted by the pelvic weight support rehabilitation robot, while the plan B performed dual-task serial subtraction-stepping training assisted by the pelvic weight support rehabilitation robot. During the intervention process, near-infrared equipment was used to collect relative oxyhemoglobin (HbO2) concentrations in six brain areas including prefrontal cortex (PFC), supplementary motor area (SMA), and primary motor cortex (PMC). The correct response rate and average number of steps were collected. Results A total of 20 patients were included. Among them, there were 16 males and 4 females. The average number of steps in Plan A were higher than those in Plan B (P<0.05). The correct response rate and the relative increase in HbO2 concentration of PFC, PMC, and SMA in both hemispheres of Plan A was higher than that in Plan B, but there was no statistically significant difference between the groups (P>0.05). Conclusions Compared with the dual-task serial subtraction-stepping training assisted by the pelvic weight support rehabilitation robot, the dual-task verbal fluency-stepping training assisted by the pelvic weight support rehabilitation robot can significantly increase the mean number of steps in the dual tasks.

    Release date:2025-07-29 05:02 Export PDF Favorites Scan
  • Neurovascular coupling analysis of working memory based on electroencephalography and functional near-infrared spectroscopy

    Working memory is an important foundation for advanced cognitive function. The paper combines the spatiotemporal advantages of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) to explore the neurovascular coupling mechanism of working memory. In the data analysis, the convolution matrix of time series of different trials in EEG data and hemodynamic response function (HRF) and the blood oxygen change matrix of fNIRS are extracted as the coupling characteristics. Then, canonical correlation analysis (CCA) is used to calculate the cross correlation between the two modal features. The results show that CCA algorithm can extract the similar change trend of related components between trials, and fNIRS activation of frontal pole region and dorsolateral prefrontal lobe are correlated with the delta, theta, and alpha rhythms of EEG data. This study reveals the mechanism of neurovascular coupling of working memory, and provides a new method for fusion of EEG data and fNIRS data.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy

    Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is a new-type human-computer interaction technique. To explore the separability of fNIRS signals in different motor imageries on the single limb, the study measured the fNIRS signals of 15 subjects (amateur football fans) during three different motor imageries of the right foot (passing, stopping and shooting). And the correlation coefficient of the HbO signal during different motor imageries was extracted as features for the input of a three-classification model based on support vector machines. The results found that the classification accuracy of the three motor imageries of the right foot was 78.89%±6.161%. The classification accuracy of the two-classification of motor imageries of the right foot, that is, passing and stopping, passing and shooting, and stopping and shooting was 85.17%±4.768%, 82.33%±6.011%, and 89.33%±6.713%, respectively. The results demonstrate that the fNIRS of different motor imageries of the single limb is separable, which is expected to add new control commands to fNIRS-BCI and also provide a new option for rehabilitation training and control peripherals for unilateral stroke patients. Besides, the study also confirms that the correlation coefficient can be used as an effective feature to classify different motor imageries.

    Release date:2020-06-28 07:05 Export PDF Favorites Scan
  • Progress of fluorescence imaging in the study of parathyroid blood supply

    ObjectiveTo understand the methods of judging the blood supply of parathyroid during thyroidectomy at home and abroad in recent years. MethodThe literature on parathyroid blood supply was collected, the research progress was reviewed, and the advantages and disadvantages of related methods were analyzed. ResultsIn recent years, near-infrared fluorescence, laser speckle contrast imaging and other technologies had been applied. They showed better advantages as compared with naked eye observation. The research on parathyroid blood supply at home and abroad was still in its infancy, and more clinical samples and related equipment optimization were still needed. ConclusionFluorescence imaging technology has a certain auxiliary role in the judgment of intraoperative parathyroid blood supply and can reduce the incidence of hypoparathyroidism to a certain extent.

    Release date:2023-02-24 05:15 Export PDF Favorites Scan
  • A study on the effects of transcranial direct current stimulation combined with motor imagery on brain function based on electroencephalogram and near infrared spectrum

    Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.

    Release date:2024-06-21 05:13 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content