Objective To explore the clinical application value of the spinal robot-assisted surgical system in mild to moderate lumbar spondylolisthesis and evaluate the accuracy of its implantation. Methods The clinical data of 56 patients with Meyerding grade Ⅰ or Ⅱ lumbar spondylolisthesis who underwent minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) between January 2017 and December 2017 were retrospectively analysed. Among them, 28 cases were preoperatively planned with robotic arm and percutaneous pedicle screw placement according to preoperative planning (group A); the other 28 cases underwent fluoroscopy-guided percutaneous pedicle screw placement (group B). There was no significant difference in gender, age, body mass index, slippage type, Meyerding grade, and surgical segmental distribution between the two groups (P>0.05). The screw insertion angle was measured by CT, the accuracy of screw implantation was evaluated by Neo’s criteria, and the invasion of superior articular process was evaluated by Babu’s method. Results One hundred and twelve screws were implanted in the two groups respectively, 5 screws (4.5%) in group A and 26 screws (23.2%) in group B penetrated the lateral wall of pedicle, and the difference was significant (χ2=9.157, P=0.002); the accuracy of nail implantation was assessed according to Neo’s criteria, the results were 107 screws of degree 0, 3 of degree 1, 2 of degree 2 in group A, and 86 screws of degree 0, 16 of degree 1, 6 of degree 2, 4 of degree 3 in group B, showing significant difference between the two groups (Z=4.915, P=0.031). In group B, 20 (17.9%) screws penetrated the superior articular process, while in group A, 80 screws were removed from the decompression side, and only 3 (3.8%) screws penetrated the superior articular process. According to Babu’s method, the degree of screw penetration into the facet joint was assessed. The results were 77 screws of grade 0, 2 of grade 1, 1 of grade 2 in group A, and 92 screws of grade 0, 13 of grade 1, 4 of grade 2, 3 of grade 3 in group B, showing significant difference between the two groups (Z=7.814, P=0.029). The screw insertion angles of groups A and B were (23.5±6.6)° and (18.1±7.5)° respectively, showing significant difference (t=3.100, P=0.003). Conclusion Compared to fluoroscopy-guided percutaneous pedicle screw placement, robot-assisted percutaneous pedicle screw placement has the advantages such as greater accuracy, lower incidence of screw penetration of the pedicle wall and invasion of the facet joints, and has a better screw insertion angle. Combined with MIS-TLIF, robot-assisted percutaneous pedicle screw placement is an effective minimally invasive treatment for lumbar spondylolisthesis.
ObjectiveTo evaluate the clinical efficacy of domestic minimally-invasive percutaneous screw system for thoracolumbar fractures without neurological damage. MethodsSixty patients suffering from unstable thoracolumbar fractures without obvious neurologic deficits treated from January 2011 to April 2012 were studied retrospectively. The patients were divided into two groups:group A (domestic minimally-invasive percutaneous screw system) and group B (imported minimally-invasive percutaneous screw system). Perioperative parameter, pre-and post-operative imaging indexes, visual analog scale (VAS) and modified MacNab evaluation standard were studied for comparison. ResultsAll the patients were followed up from 6 to 18 months with an average of (12.2±3.0) months. The Cobb's angle and anterior height of the fracture vertebral body changed significantly in each group (P<0.05). There was no significant difference in incision size, surgical time, postoperative improvement of Cobb's angle, anterior height of the fracture vertebral body and accuracy of pedicle screw placement between the two groups (P>0.05). ConclusionDomestic minimally-invasive percutaneous screw system is reliable with minimal invasion, which is comparable to imported minimally-invasive percutaneous screw system.
ObjectiveTo investigate the effectiveness of cervical pedicle screw implantation technique under regional method.MethodsThe clinical data of 85 patients who met the selection criteria between April 2010 and May 2018 were retrospectively analyzed. There were 57 males and 28 females, aged 35-68 years, with an average of 57.6 years. Among them, there were 10 cases of ossification of posterior longitudinal ligament, 68 cases of cervical spondylosis with multilevel stenosis, 3 cases of cervical tumor, 1 case of congenital malformation, and 3 cases of cervical trauma; the lower cervical spine lesions involved C3-C7. Preoperative Frankel spinal cord injury grading: 2 cases of grade C, 51 cases of grade D, and 32 cases of grade E. Cervical pedicle screw implantation technique under regional method was performed with a total of 618 pedicle screws. Postoperative changes in neurological symptoms were observed; cervical mouth opening anteroposterior and lateral X-ray films and cervical CT examinations were performed to evaluate the pedicle screws position.ResultsThe operation time was 2.5-4.0 hours, with an average of 3.0 hours. The intraoperative blood loss was 180-550 mL, with an average of 345 mL. No intraoperative vascular or nerve injury occurred. The patients with neurological symptoms were relieved to varying degrees. There were 2 cases of superficial incision infection after operation, the wound healed after enhanced dressing change. The postoperative hospital stay was 5-14 days, with an average of 8.4 days. At discharge, Frankel neurological grading was grade D in 26 patients and grade E in 59 patients. All the patients were followed up 6-24 months, with an average of 13 months. At last follow-up, cervical X-ray films showed the good pedicle screw fixation without loosening. Cervical CT evaluated the position of pedicle screws: 523 pedicle screws (84.7%) in grade Ⅰ, 80 (12.9%) in grade Ⅱ, and 15 (2.4%) in grade Ⅲ; the accuracy rate of the screw position was 97.6%.ConclusionCervical pedicle screw implantation technique under regional method can significantly improve the success rate of screw implantation. It is easy to operate, does not destroy the bone cortex, and has stable fixation.
ObjectiveTo investigate reliability and short-term effectiveness of axis laminar screws for reducible atlantoaxial dislocation (RAAD).MethodsA clinical data of 41 patients with RAAD who were admitted between February 2013 and February 2018 and met the inclusion criteria was retrospectively analyzed. The atlases in all patients were fixated by lateral mass screws, and the axes were fixed by laminar screws in 13 cases (LS group) and by pedicle screws in 28 cases (PS group). There was no significant difference in gender, age, and preoperative Japanese Orthopedic Association (JOA) score between the two groups (P>0.05). The effectiveness was estimated by post-operative JOA score; and the accuracy of the axis screw, atlantoaxial bone graft fusion, and the fixation stability were examined by X-ray film and CT.ResultsAll incisions healed by first intention. All patients were followed up 12-17 months (mean, 13.8 months) in LS group and 12-20 months (mean 14.1 months) in PS group, and the difference in follow-up time was not significant (Z=−0.704, P=0.482). At last follow-up, JOA scores were 13.9±1.6 in LS group and 14.3±1.8 in PS group, which significantly improved when compared with the pre-operative scores in the two groups (t=−9.033, P=0.000; t=−15.835, P=0.000); while no significant difference was found between the two groups (t=−0.630, P=0.532). Twenty-five screws of 26 screws in LS group and 54 screws of 56 screws in PS group were implanted accurately, with no significant difference in the accuracy of the axis screw between the two groups (Z=−0.061, P=0.951). All patients obtained atlantoaxial bone graft fusion, except 1 case in PS group. There was no significant difference in the atlantoaxial bone graft fusion between the two groups (Z=−0.681, P=0.496).ConclusionFor RAAD, Axis laminar screws can maintain the atlantoaxial primary stability and had a good short-term effectiveness. So, it could be an alternative and reliable technique for axis screw.
To analyze the effectiveness of posterior pedicle screw system combined with interbodyfusion in treating lumbar spondylol isthesis. Methods Between January 2005 and January 2009, 26 patients with lumbar spondylol isthesis underwent posterior pedicle screw system combined with interbody fusion, including 11 males and 15 females with an average age of 56.8 years (range, 36-73 years). The disease duration was 7 months to 11 years. The affected lumbars were L3 in 3 cases, L4 in 12 cases, and L5 in 11 cases. According to the Meyerding evaluating system, 21 cases were classified as degree III, 5 cases as degree III-IV, and 1 case as degree IV. The cl inical results were investigated by measuring radiographic measurements, including Taillard index, Boxall index, sl i pping angle, lumbar lordosis angle,and intervertebral height index preoperatively, immediately, 2 weeks and 3 months postoperatively, respectively. SUK’s criteria was used to judge bone graft fusion. Results Primary heal ing of the incisions was achieved in all cases. Allpatients were followed up 25.8 months on average (range, 10-51 months). There were significant differences in Taillardindex, Boxall index, sl i pping angle, lumbar lordosis angle, and intervertebral height index between preoperatively andimmediately, 2 weeks, 3 months after operation (P lt; 0.05). Bone graft fusion was achieved at 3-8 months after operation(mean, 3.5 months); and the fusion rate was 100%. According to Japanese Orthopedic Association (JOA) scoring, theresults were excellent in 17 cases, good in 7 cases, fair in 1 case, and poor in 1 case; and the excellent and good rate was 92.3%. Compl ications occurred in 2 cases, including nail or rod breakage and nerve injury, and they were cured aftertreatment. Conclusion Posterior pedicle screw system combined with interbody fusion treating lumbar vertebralspondylol isthesis can afford sol id internal fixation and achieve a satisfactory reduction, so it maybe an ideal procedure and a worthy recommended method for treating lumbar spondylol isthesis.
Objective To explore the clinical effect of PSIS-A robot-assisted percutaneous screw in the treatment of thoracolumbar fracture. Methods Patients with thoracolumbar fracture who were hospitalized in Mianyang Orthopedic Hospital between August 2022 and January 2024 and required percutaneous pedicle screw f ixation were selected. Patients were divided into robot group and free hand group by random number table. Operative time, intraoperative bleeding, intraoperative radiation dose and time, implant accuracy rate, small joint invasion rate, Visual Analogue Scale score for pain and other indexes were compared between the two groups. Results A total of 60 patients were included. Among them, there were 28 cases in the robot group and 32 cases in the free hand group. On the third day after surgery, the Visual Analogue Scale score of the robot group was better than that of the free hand group (P=0.003). Except for intraoperative bleeding and radiation frequency (P>0.05), the surgical time, average nail implantation time, and intraoperative radiation dose in the robot group were all lower than those in the free hand group (P<0.05). The accuracy and excellence rate of nail planting in the robot group were higher than those in the free hand group (94.6% vs. 84.9%; χ2=7.806, P=0.005). There was no statistically significant difference in the acceptable accuracy rate (96.4% vs. 91.1%; χ2=3.240, P=0.072) and the incidence of screw facet joint invasion (7.2% vs.14.1%; χ2=3.608, P=0.058) between the two groups. Conclusion The application of PSIS-A type robot assisted percutaneous minimally invasive pedicle screw fixation in the treatment of thoracolumbar fr actures is promising.
Objective To evaluate the therapeutic effects of expandable pedicle screw (EPS) combined with interbody fusion cage on lumbar spondylolisthesis. Methods From June 2004 to March 2008, 23 patients with lumbar spondylolisthesiswere treated, including 9 males and 14 females aged 24-72 years old (average 48.7 years old). The course of the disease varied from 6 months to 6 years (average 30.4 months). There were 18 cases of degenerative spondylol isthesis and 5 of isthmic spondylolisthesis, including 1 case at L3,4 level, 14 at L4,5 level, and 8 at L5 and S1 levels. There were 17 cases of grade I, 4 of grade II, and 2 of grade III (including 1 case of recurrent L5 spondylolysis) according to Meyerding classification system. Posterior lumbar interbody fusion was performed using 48 PLIVIOS interbody fusion cages, and spondylolisthesis reduction and internal fixation were conducted using 84 pieces of EPS. The indications for use of EPS were initial operation with bone mass reduction or osteoporosis, reoperation of previous pedicle instrumentation, intraoperative screw relocation, sacral anchoring, and construct reinforcement. Cl inical outcomes, radiographic reduction of spondylol isthesis and bone fusion of lumbar interbody were evaluated based on JOA score, Boxall index, and Cook criteria. Results The incision healed by first intension in all cases except for one revision case that suffered from postoperative cerebrospinal fluid leakage and obtained delayed-healing without infection 23 days after operation using conservative treatment. No operative compl ications such as nerve and organ injuries were found.All cases were followed up for 12-39 months (average 17.8 months). X-ray exams of spine AP, lateral, fully extended position and fully flexed position view showed all 84 EPS were fully expanded within vertebral body. The improvement rate of JOA at the final follow-up visit was markedly effective in 14 cases, and effective in 5 cases, and noneffective in 4 cases, with a total effective rate of 82.61%. Anatomic reduction was achieved in 14 cases, improvement was obtained in 6 cases, no improvement was observed in 3 cases, and the reduction rate was 86.69%. Lumber interbody fusion was achieved in 20 cases, fixation was achieved in 2 cases, failure was observed in 1 cases, and the fusion rate was 86.69%. Conclusion EPS in complex with interbody fusion cage provides effective reduction, internal fixation and interbody fusion for the reconstruction of lumbar spondylolisthesis.
Objective To analyze the therapeutic effect of the posterior pedicle screw system combined with interbody fusion cage on lumbarspondylolisthesis. Methods From February 2003 to March 2006, 37 lumbar spondylolisthesis patients were treated with this operation, including21 males and 16 females and aging 3969 years.The affected lumbars were L3(3cases),L4(23 cases), and L5(11 cases). According to the Meyerdingevaluating system, 12 cases were lassified as degree Ⅰ, 20 cases as degree Ⅱ,and 5 cases as degree Ⅲ. Taillard index, Boxall index, slipping angle, lumbar lordosis angle and intervertebral height index were measured before operation, and 2 weeks and 3 months after operation. Results All patients were followed up 336 months. There were statistically significant differences in Taillard index, Boxall index, slipping angle, lumbar lordosis angle and intervertebral height index between before operation and 2 weeks after operation (P<0.05),and no statistically significant differences between 2 weeks and 3 months afteroperation(P>0.05). According to Dewei Zhou’s creterior for scoring, the results were excellent in 27 cases, good in 8 cases,and fair in 2 cases. Theexcellent and good rate was 94.6%. All of the embedded osseous were fused. Thefusing time was from 3 to 8 months (mean 3-9 months). There were no breakageof screw and rod. The position and configuration of the whole cages were good. Conclusion Applying the posterior pedicle screw system combined with interbody fusion cage may achieve synergism in the treatment of lumbar vertebral spondylolisthesis. Above procedure is served as solid internal fixationand offers a satisfactory reduction, and can improve the fusion rate of the spine. So it is an ideal procedure and worthily recommended method for treatment oflumbar vertebral spondylolisthesis.
ObjectiveTo investigate the accuracy of progressive three-dimensional navigation template system (abbreviated as progressive template) to assist atlas-axial pedicle screw placement. MethodsThe clinical data of 33 patients with atlas-axial posterior internal fixation surgery between May 2015 and May 2017 were retrospectively analyzed. According to the different methods of auxiliary screw placement, the patients were divided into trial group (19 cases, screw placement assisted by progressive template) and control group (14 cases, screw placement assisted by single navigation template system, abbreviated as initial navigation template). There was no significant difference in gender, age, cause of injury, damage segments, damage types, and preoperative Frankel classification between the two groups (P>0.05). The operation time and intraoperative blood loss of the two groups were compared. The safety of screw placement was evaluated on postoperative CT by using the method from Kawaguchi et al, the deviation of screw insertion point were calculated, the angular deviation of the nailing on coordinate systems XOZ, XOY, YOZ were calculated according to Peng’s method. ResultsAll patients completed the operation successfully; the operation time and intraoperative blood loss in the trial group were significantly less than those in the control group (t=–2.360, P=0.022; t=–3.006, P=0.004). All patients were followed up 12–40 months (mean, 25.3 months). There was no significant vascular injury or nerve injury aggravation. Postoperative immediate X-ray film and CT showed the dislocation was corrected. Postoperative immediate CT showed that all 76 screws were of grade 0 in the trial group, and the safety of screw placement was 100%; 51 screws were of grade 0, 3 of gradeⅠ, and 2 of gradeⅡ in the control group, and the safety of screw placement was 91.1%; there was significant difference in safety of screw placement between the two groups (χ2=7.050, P=0.030). The screw insertion point deviation and angular deviation of the nailing on XOY and YOZ planes in the trial group were significantly less than those in the control group (P<0.05). There was no significant difference in angular deviation of the nailing on XOZ between the two groups (t=1.060, P=0.290). ConclusionCompared with the initial navigation template, the progressive navigation template assisting atlas-axial pedicle screw placement to treat atlas-axial fracture with dislocation, can reduce operation time and intraoperative blood loss, improve the safety of screw placement, and match the preoperative design more accurately.
Objective To compare the effectiveness of spinal robot-assisted pedicle screw placement through different surgical approaches and to guide the clinical selection of appropriate robot-assisted surgical approaches. MethodsThe clinical data of 14 patients with thoracolumbar vertebral diseases who met the selection criteria between January 2023 and August 2023 were retrospectively analyzed, and all of them underwent pedicle screw placement under assistant of the Mazor X spinal surgery robot through different surgical approaches. The patients were divided into posterior median approach (PMA) group (n=6) and intermuscular approach (IMA) group (n=8) according to the surgical approaches, and there was no significant difference in age, gender, body mass index, disease type, and fixed segment between the two groups (P>0.05). The operation time, intraoperative blood loss, screw-related complications, and reoperation rate were recorded and compared between the two groups; the inclination angle of the screw, the distance between the screw and the midline, and the caudal inclination angle of the screw were measured based on X-ray films at immediate after operation. Results There was no significant difference in operation time and intraoperative blood loss between the two groups (P>0.05). There was no screw-related complication such as nerve injury in both groups, and no patients underwent secondary surgery. At immediate after operation, the inclination angle of the screw, the distance between the screw and the midline, and the caudal inclination angle of the screw in the IMA group were significantly greater than those in the PMA group (P<0.05). ConclusionThere are differences in the position and inclination angle of screws placed with robot-assisted surgery through different surgical approaches, which may be due to the obstruction of the screw path by soft tissues such as skin and muscles. When using spinal robot-assisted surgery, selecting the appropriate surgical approach for different diseases can make the treatment more reasonable and effective.