west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "periosteum" 16 results
  • REPAIR OF LARGE ARTICULAR CARTILAGE DEFECT OF HIP WITH ALLOGRAFT OF SKULL PERIOSTEUM

    It is very difficult to repair large articular cartilage defect of the hip. From May 1990 to April 1994, 47 hips in 42 patients of large articuler cartilage defects were repaired by allograft of skull periosteum. Among them, 14 cases, whose femoral heads were grade. IV necrosis, were given deep iliac circumflex artery pedicled iliac bone graft simultaneously. The skull periosteum had been treated by low tempreturel (-40 degrees C) before and kept in Nitrogen (-196 degrees C) till use. During the operation, the skull periosteum was sutured tightly to the femoral head and sticked to the accetabulum by medical ZT glue. Thirty eight hips in 34 patients were followed up for 2-6 years with an average of 3.4 years. According to the hip postoperative criteria of Wu Zhi-kang, 25 cases were excellent, 5 cases very good, 3 cases good and 1 case fair. The mean score increased from 6.4 before operation to 15.8 after operation. The results showed, in compare with autograft of periosteum for biological resurface of large articular defect, this method is free of donor-site morbidity. Skull periosteum allograft was effective for the treatment of large articular cartilage defects in hip.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
  • DEVELOPMENT OF THE TISSUE-AUTOGRAFTING

    Objective To introduce the current situation and prospect of the tissue-autografting, such as the flaps, muscle flaps, and bone(periosteum) flaps, andits application in reparative and reconstructive surgery. Methods Based on our own experiences and combined with the review of the literature at home and abroad, the latest development of the tissue autografting was analyzed. Results The femoral anterolateral flap, latissimus dorsi muscle flap, upper arm lateral flap, scap flap, temporal fascial flap and perforator flap are the frequently used in clinic. Of all the perforator flap had such advantages as better repair of the recipient sites and less damage of the donor site. Beacause of more advantages of the free myocutaneous flap transplantation, it substituted thefree muscle transplantation. The atissimus dorsi muscle myocutaneous flap was the most frequently used in the transplant of the vessels, with preserved function of the thoracodorsal nerve or with repair of the defected tissues by the bridge. The most common donor sites of the bone were ribs,iliac bone,fibula andscapula, so the severe bone defects or the bone nonunion, femoral head ischemic necrosis, and the bone graft from the tumor removal could be managed with the bones from those sites. Conclusion The autografting in repairing the tissue defect has become one of the most important surgical techniques in reparative and reconstructive surgery.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • THE ANATOMIC STUDY AND CLINICAL APPLICATION OF THE BONE (PERIOSTEUM) FLAP PEDICLED WITH UPPER MUSCULAR BRANCHES OF LATERAL FEMORAL MUSCLE

    OBJECTIVE: To explore the anatomic feature and clinical application of the bone (periosteum) flap pedicled with upper muscular branches of lateral femoral muscle. METHODS: The anatomic features and distribution of upper muscular branches of lateral femoral muscle were observed in the lower extremities of 40 adult cadavers. From February 1989 to February 1999, 7 cases with bone defect or nonunion of upper part of femur were treated with transfer of bone (periosteum) flap pedicled with upper muscular branches of lateral femoral muscle. RESULTS: The upper muscular branches of lateral femoral muscle originated from the transversal branch of lateral circumflex femoral artery. The musculoperiosteal branch and periosteal branch were originated at 16.8 +/- 3.0 cm below the greater trochanter. The diameter and length of musculoperiosteal branch were 1.4 to 1.7 mm and 2.7 to 5.6 cm, those of the periosteal branch were 0.4 to 0.6 mm and 1.2 to 1.5 cm respectively. Bone union achieved in 10 to 18 weeks after operation in all 7 cases after 18 to 42 months follow-up. The motion of hip joint reached 180 degrees in 4 cases, 120 degrees in 2 cases and 65 degrees in 1 case. The donor area recovered well. CONCLUSION: The bone (periosteum) flap pedicled with upper muscular branches of lateral femoral muscle is an effective alternative for repairing the bone defect or nonunion of the upper or middle part of femur.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • REPAIR OF FEMORAL NECK FRACTURE WITH VASCULAR PEDICLED PERIOSTEUM FLAP TRANSFER IN YOUNG AND MIDDLE-AGED

    Objective To estimate clinical effect ofspin iliac deep vascular pedicled periosteum flap in repairing traumatic femoral neck of theca inside fracture in young and middleaged. Methods From April 1993 to September 2001, 12 cases of traumatic femoral neck fracture were given diaplastic operation with fixation of 3 centre hollow pressed bolt and were conducted under os traction bed and "C" arm X-ray machine. Spin iliac deep vascular pedicled periosteum flap wasstripped off, and transferred to the front of femoral neck fundus,then transplanted to the narrow inside of fracture through outer open door of articular capsule.Results All patients were followed up for 17 years. All fracture healedwithout femoral head necrosis, but mild arthritis appeared in 7 cases.Conclusion Vascular pedicled periosteum flap transfer of young and middle-aged femoral neck fracture, by decompression of femoral neck and reconstruction of blood circulation, can promote the fracture healing and decrease the wound and blood circulation destroy.

    Release date: Export PDF Favorites Scan
  • PRIMARY STUDY ON TISSUE ENGINEERED PERIOSTEUM OSTEOGENESIS TO REPAIR SCAPULA DEFECT IN VIVO IN ALLOGENIC RABBIT

    ObjectiveTo investigate the feasibility of tissue engineered periosteum (TEP) constructed by porcine small intestinal submucosa (SIS) and bone marrow mesenchymal stem cells (BMSCs) of rabbit to repair the large irregular bone defects in allogenic rabbits. MethodsThe BMSCs were cultivated from the bone marrow of New Zealand white rabbits (aged, 2 weeks-1 month). SIS was fabricated by porcine proximal jejunum. The TEP constructed by SIS scaffold and BMSCs was prepared in vitro. Eighteen 6-month-old New Zealand white rabbits whose scapula was incompletely resected to establish one side large irregular bone defects (3 cm×3 cm) model. The bone defects were repaired with TEP (experimental group,n=9) and SIS (control group,n=9), respectively. At 8 weeks after operation, the rabbits were sacrificed, and the implants were harvested. The general condition of the rabbits was observed; X-ray radiography and score according to Lane-Sandhu criteria, and histological examination (HE staining and Masson staining) were performed. ResultsAfter operation, all animals had normal behavior and diet; the incision healed normally. The X-ray results showed new bone formation with normal bone density in the defect area of experimental group; but no bone formation was observed in control group. The X-ray score was 6.67±0.32 in experimental group and was 0.32±0.04 in control group, showing significant difference (t=19.871,P=0.001). The general observation of the specimens showed bone healing at both ends of the defect, and the defect was filled by new bone in experimental group; no new bone formed in the control group. The histological staining showed new bone tissue where there were a lot of new vessels and medullary cavity, and no macrophages or lymphocytes infiltration was observed in the defect area of experimental group; only some connective tissue was found in the control group. ConclusionTEP constructed by porcine SIS and BMSCs of rabbit can form new bone in allogenic rabbit and has the feasibility to repair the large irregular bone defects.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF PERIOSTEUM AUTOGRAFT IN REPAIRING BONE DEFECT AND ITS CLINICAL APPLICATION

    Abstract In order to find a new method to repair large bone defect, the free periosteum autograft was investigated in experiment, and then the method was used clinically. In the experiment, a 6mm×18mm×5mm bone defect was made at upper end of both tibiae of 42 rabbites. The periosteum of each rabbit was cut into 1mm cubes, and implanted randomly into the tbial bone defect on one side and the other side was used as control. After 2, 4, 8 weeks, the bone defects of each group were examined for bone formation by roentgenography, radionuclide and histology. The results showed that the defects treated by free periosteum autografts healed twice as fast as the controls (its natural healing). The reason probably was that the periosteum provided with many osteogenic cells. On thebasis of these results, 21 cases of bone defects (the largest was 10.5cm×4cm×4cm, the smallest was 2cm×2cm×2cm) including 17 cases of benign bone tumor and4 cases of chronic osteomyelitis, were treated by free periosteum autografts. The defects were all healed, and the function of the joints was restored.

    Release date:2016-09-01 11:11 Export PDF Favorites Scan
  • EXPRESSIONS OF Cbfa1 AND Osterix IN OSTEOBLASTS ON HUMAN ACELLULAR AMNIOTIC MEMBRANE

    Objective To study the differentiation of the human osteoblasts during the construction of the tissue engineered periosteum with the human acellular amniotic membrane(HAAM).Methods To construct the tissue engineered periosteum (n=60) with HAAM, the human fetal osteoblasts were used. The fetal osteoblasts were cultured for 2, 4, 6, 8, and10 days, and then their total RNA was extracted, which were reversely transcripted to cDNA. The realtime PCR analysis was used to reveal Cbfal and Osterix, and the cycle threshold (Ct) was also measured. The simplycultured osteoblasts were used as the control group (n=20).Results The expression of Cbfa1 was higher in the experimental group on the 2nd day when compared with that on the 4th, 6th, and 8th day(P<0.05). The same result existed on the 10th day when compared with that on the 4th and 8th day. The expression of Osterix increased and was highest on the 8th day when compared with the other results(P<0.05). Both of the 2 gene expressions were decreased in the control group when compared with those in the experimental group, but with no significant difference(P>0.05). Conclusion Cbfa1 and Osterix can be normally expressed by the osteoblasts after their integration with HAAM. As a scaffold, HAAM can be used to keep the osteoblast phenotype and differentiation with an osteoconductive ability. Such a cell-scaffold complex may provide a basis for the osteogenesis.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • TREATMENT OF ISCHEMIC NECROSIS OF FEMORAL HEAD BY THE TRANSFER OF VASCULAR PEDICLED ILIAC PERIOSTEUM

    OBJECTIVE To investigate the therapeutical effect of treatment of ischemic necrosis of femoral head by the transfer of vascular pedicled iliac periosteum. METHODS From June 1983 to August 1997, 106 cases with ischemic necrosis of femoral head (II stage in 64 cases, III stage in 39 cases, IV stage in 3 cases) were treated by the transfer of vascular pedicled iliac periosteum with ascending branch of lateral femoral circumflex vessel or deep circumflex iliac vessel pedicle. RESULTS Followed up 2 years and 4 months to 16 years, there were excellent in 54 cases, better in 38 cases, moderate in 9 cases, poor in 5 cases, and 86.8% in excellent rate according to the criterion of the therapeutical effect on the repair and reconstruction of adult ischemic necrosis of femoral head. CONCLUSION Treating ischemic necrosis of femoral head by the transfer of vascular pedicled iliac periosteum has the advantage of constant pedicle, easily drawing materials and reliable therapeutical effect.

    Release date:2016-09-01 10:25 Export PDF Favorites Scan
  • ABSTRACTSTHE EXPERIMENTAL CTUDY OF THE REPAIR OF LONG BONE DEFECTS BY CCOMBINED GRAFTING OF HOMOGENOUS DECALCIFIED BONE MATRIX(DBM) WITH CENTRALLY ENVELOPED VASCULARIZED PERIOSTEUM

    The repair of the long bone defects by combined grafting of homogenous deealcified bene matrix(DBM ) with centrally enveloped vascularized periosteum Was reported as a new techniqe. Theroentgenograms,bone mineral count and histologic examination were done. The results showed thatthis method was beneficial and had better effect on prornoting healing of the long bene defeets fromone stage operation The oporative proeedure was described on deatil It was considered that the homogenous DBM ...

    Release date:2016-09-01 11:18 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF BONE REPAIR INDUCED BY CRYOPRESERVED ALLOGRAFT PERIOSTEUM AND FETAL BONE COMPOSITION IN BONE DEFECT

    OBJECTIVE: To investigate the repairing effect of transplantation of allogeneic fetal bone in combination with a covering cryopreserved periosteal allograft to bone defect. METHODS: Twenty Long-eared white male rabbits were chosen as experimental model of bilateral 12 mm combined bony and periosteal radial defect. Cryopreserved allograft periosteum with allogeneic fetal bone were implanted in the left defect as experimental side and fetal bone was simply transplanted in the right defect as control side. Bone repair process in the two groups were compared by macroscopy, microscopy, roentgenograms and the contents of calcium and phosphate in the defect area at 2, 4, 8 and 12 weeks after transplantation. RESULTS: There was significant statistic difference in the contents of calcium and phosphate between the experimental and control sides at 4, 8 and 12 weeks after transplantation (P lt; 0.05). With time passing by, the contents of calcium and phosphate have the increasing trends. In the experimental group, lamella bone was seen and medullary canal recanalized at 8 weeks postoperatively. The histological section showed the bone lacuna and lamella bone were formed. CONCLUSION: It suggests that allogeneic fetal bone in combination with a covering cryopreserved periosteal allograft can promote bone repair, and allogeneic fetal bone is excellent bone substitute.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content