ObjectiveTo discuss the value of dual-source CT Flash scanning in reducing the dose of radiation in 3D cardiac imaging. MethodWe collected 60 patients from March to August 2014 who should undergo cardiac 3D CT scanning before radiofrequency ablation. They were randomly divided into group A and B with 30 in each. Patients in group A underwent flash technology scanning, while those in group B accepted conventional retrospective electrocardiography-gated scanning. CARE Dose techniques were used to collect data. Scanning parameters were the same for both groups:collimation was 128×0.6 mm, reconstruction thickness was 0.75 mm, reconstruction interval was 0.7 mm, and field of view was 180-200 mm. After image acquisition, we measured the CT values and noise of left atrium and various branches of the pulmonary veins (upper left, lower left, upper right, and lower right). Statistical software was used for the two groups of images to analyze the carrier noise ratio (CNR), signal noise ratio (SNR), blinded scores, computed tomography dose index (CTDIvol), and dose-length product (DLP) of the left atrium and pulmonary vein. ResultsCNR and SNR of the left atrium and various pulmonary veins between the two groups had no significant differences (P>0.05) . Blinded scores between the two groups were not significantly different (P>0.05) . CTDIvol in group A and group B was respectively (2.92±0.38) and (20.15±12.09) mGy, with a significant difference (t=?7.803, P<0.001) . DLP of group A was (59.30±6.67) mGy·cm, significantly lower than that in group B [(334.43±216.71) mGy·cm] (t=?6.591, P<0.001) . Flash-efficient radiation dose was (0.83±0.94) mSv in group A, far below that in group B [(4.53±3.03) msv], and the difference was statistically significant (t=?6.684, P<0.001) . ConclusionsDual-source CT Flash technology applied in 3D cardiac scanning can reduce radiation dose as well as meet the needs of image diagnosis.
Objective To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats. Methods Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups (n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×107cells/mL), group B received 0.1 mL of rat ADSCs (1×107cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×107cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×107cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3. ResultsAll groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences (P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences (P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups (P<0.05). Conclusion ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
The dose data produced by treatment plan system (TPS) in intensity-modulated radiation therapy (IMRT) has many gradient edge points. Considering this feature we proposed a new interpolation algorithm called treatment plan dose interpolation algorithm based on gradient feature in intensity-modulated radiation therapy (TDAGI), which improves the Canny algorithm to detect the gradient edge points and non-edge points by using the gradient information in the dose data plane. For each gradient edge point, the corresponding gradient profile was traced and the profile's sharpness was calculated, and for each non-edge point, the dispersion was calculated. With the sharpness or dispersion, the kernel coefficients of bi-cubic interpolation can be obtained and can be used as the central point to complete the bi-cubic interpolation calculation. Compared with bi-cubic interpolation and bilinear interpolation, the TDAGI algorithm is more accurate. Furthermore, the TDAGI algorithm has the advantage of gradient keeping. Therefore, TDAGI can be used as an alternative method in the dose interpolation of TPS in IMRT.
ObjectiveTo discuss the clinical value of internal radiation therapy with hepatic intraarterial iodine131 labeled material for the treatment of hepatocellular carcinoma (HCC). MethodsThis summarized paper was made on literature review. ResultsIodine131lipiodol and several reported iodine131labeled antibodies to HCC associated antigens were concentrated in the foci of HCC with a high tumortonormaltissue absorbed dose ratios. No severe side effects occurred. It was used in various kinds of HCC patients, and mostly showed a significant tumor response. Survival rate of HCC patients was raised in several clinical trials.Conclusion Internal radiotherapy with hepatic intraarterial iodine131 labeled material may be considered as an effective method to treat HCC.
Objective To research the effect of γ-radiation released from 103Pd radioactive stent on the expression of Fas gene and its relation with apoptosis of bile duct cancer cells lines. Methods The cancer cells of bile duct were dissociated into suspension in culture flasks, and the number of cells was counted by hemacytometry. The suspension was then stored in 2 ml freezing tubes in the density of 1×105/ml. They were set in two stents: general stent (general stent group) and 103Pd radioactive stent (103Pd stent group). The expression of Fas gene and apoptosis of bile duct cancer cells in general stent group and 103Pd stent group were analysed with immunohistochemistry technique and TUNEL method, respectively. Results The expression level of Fas gene in 103Pd stent group was significantly higher than that in general stent group (P<0.05), and the number of apoptotic cancer cells in 103Pd stent group was also significantly more than that in general stent group (P<0.01). Conclusion There is a correlation between the expression of Fas gene and the apoptosis of bile duct cancer cells, which means that 103Pd radioactive stent may increase the expression of Fas gene and promote the apoptosis of cancer cells. It may be helpful for the further study of treatment for bile duct cancer using 103Pd radiative stent.
Objective To investigate the results of human amniotic membrane(HAM) which are loaded with marrow mesenchymal stem cells(MSCs) and epidermis cells in treating fullthickness skin defect combined with radiation injury. Methods Eight minipigs were used in this study. Three round fullthickness wounds(Ф3.67cm), which combined with radiation injury, were created on the dorsum of each side close to the vertebral column in each animal. Among 48 wounds, 24 left side wounds were treated with HAM loaded with MSCs and epidermis cells as experimental group (group A), 16 right side wounds with simple HAM (HAM group, group B) and 8 right side wounds with oil gauze as control (group C). The granulation tissue, reepithelization and wound area were observed after 1,2 and 3 weeks. Immunohistochemistry was performed using vWF as a marker for blood vessels.Image analysis was employed to test new area of wound at different interval time and healing rate of wound.Results The healing time of group A was 6 to 7 days faster than that of group C and 5 to 6 days faster than that of group B. After 15-17 days of graft, there were significant differences in new area of wound and healing rate between group A and groups B,C(Plt;001). New epidermis fully covered whole wound surface in group A, and their granulation tissue, which contained a lot of vWF, fibroblasts, capillaries and collagen, grew well. Many inflammatory cells still were seen in groups B and C, and their contents of vWF, fibroblasts, capillaries and collagen in granulation tissue were smaller than that in group A.Conclusion The graft of HAM loaded with MSCs and epidermis cells played an effective role in promoting healing of wound combined radiation injury with high quality.
The Monte Carlo N-Particle (MCNP) is often used to calculate the radiation dose during computed tomography (CT) scans. However, the physical calculation process of the model is complicated, the input file structure of the program is complex, and the three-dimensional (3D) display of the geometric model is not supported, so that the researchers cannot establish an accurate CT radiation system model, which affects the accuracy of the dose calculation results. Aiming at these two problems, this study designed a software that visualized CT modeling and automatically generated input files. In terms of model calculation, the theoretical basis was based on the integration of CT modeling improvement schemes of major researchers. For 3D model visualization, LabVIEW was used as the new development platform, constructive solid geometry (CSG) was used as the algorithm principle, and the introduction of editing of MCNP input files was used to visualize CT geometry modeling. Compared with a CT model established by a recent study, the root mean square error between the results simulated by this visual CT modeling software and the actual measurement was smaller. In conclusion, the proposed CT visualization modeling software can not only help researchers to obtain an accurate CT radiation system model, but also provide a new research idea for the geometric modeling visualization method of MCNP.
OBJECTIVE Influence of irradiation and phenytoin sodium on modulatory activities of wound fluid on proliferation of fibroblasts and collagen synthesis was studied. METHODS The male Wistar rats were used in this study. The rats were divided into irradiated and non-irradiated groups, and in each of them it was subdivided into phenytoin group and control. A 7 cm long incisional wound was made on the back of each rat, in which a polyvinyl alcohol sponge (PVAS) with a size of 1.0 cm x 0.4 cm was implanted into the wound and the wound was sutured up. The PVAS was prepared by rinsing in running water over night and then was boiled for 30 minutes. Before implantation, the sponge was immersed in phenytoin sodium solution (10 mg/l ml) or normal saline (as control). From each wound the wound fluid and fibroblasts were collected. The methods of incorporation of 3H were adopted to assess the proliferation of fibroblasts and synthesis of collagen. RESULTS It was shown that proliferation of fibroblasts and collagen synthesis were stimulated by wound fluid remarkably on 5 to 8 days after wounding, and that 6 Gy to total-body irradiation wound decrease this effect. It was also noted that topical phenytoin sodium increased the modulatory activity of wound fluid irrespective of being irradiated or not. CONCLUSION It could be drawn that, after total-body irradiation, stimulation of hyperplasia of fibroblasts and collagen synthesis by wound fluid was markedly lowered indicating the total-body irradiation resulted in changes of local conditions of the wound which was unbenefitted to repair of tissue cells, while phenytoin sodium could enhance the stimulating action of wound fluid on proliferation of fibroblasts and synthesis of collagen which was beneficial to wound healing.
【Abstract】Objective To investigate the irradiating effect of low intensive microwave (LIM) on pathological process of blood vessel restenosis(RS) and assess the probability of LIM irradiation to prevent was used RS.Methods Fortyfour male healthy New Zealand rabbits were randomly divided into 2 groups. Fogarty catheter traumatize to the tunica intima of iliac artery so as to establish RS models. Two thousand four hundred and fifty MHz microwave with different power of 2 ,5 and 10 mW/cm2 was used, locally to irradiate EIA in irradiating group (1 h/d). Specimens were obtained at different time of 3,7,14 and 28 d after operation. Morphological changes of tissues were observed with HE and EF staining and the area of tunica intima, tunica media and the rate of cavity stenosis were analyzed with image analysis system; apoptosis was detected with TUNEL; phenotype and microstructure of VSMC were observed with TEM. Results After microwave irradiating, inflammatory reaction in early period was suppressed, mural thrombus decreased, the proliferation and migration of VSMC depressed, the area of tunica intima and the rate of cavity stenosis obviously reduced comparing with the control group (P<0.01). The rate of apoptosis cells showed that there were no obvious differences among each group on 3 d after operation (Pgt;0.05). At other different time, however, the rate of apoptosis cells in irradiating groups obviously increased than that of the control group (P<0.01), particularly in the one with power of 5 mW/cm2 .The number of synthesis form VSMC in the control group occupied (93.50±3.45)% of the total number of VSMC on 14 d after operation. Most of VSMC appear contractile in irradiating group in which a lot of morphological changes of apoptosis in fibroblast and VSMC existed.Conclusion LIM irradiation could obviously prevented from pathologic procedure of RS. After LIM irradiating, inflammatory reaction in early period is suppressed, the proliferation and migration of VSMC depressed. LIM irradiation promotes cell apoptosis, effectively prohibites the occurring and development of RS. LIM irradiation has had relationship between quantity and effect, power span to effectively prohibit RS, particularly in the one with power of 5 mW/cm2.
摘要:目的: 评估手术、栓塞及γ刀综合治疗脑动静脉畸形的疗效。 方法 :回顾性分析了我科自2002年3月至2009年7月期间综合治疗的43例脑AVM患者,分析评估这43例脑AVM的临床特点及治疗效果,随访患者并对其进行GOS评分。 结果 :本组病例采取栓塞+手术治疗3例、栓塞+γ刀治疗26例、手术+γ刀治疗11例、栓塞+手术+γ刀治疗3例。术后随访28例,随访时间4月至7年6月,GOS评分5分者25例,患者均能重新回到工作或学校;GOS评分4分者2例,患者生活能够自理;GOS评分1分者1例,患者死亡。 结论 :对大型、功能区、有深部静脉引流的脑AVM综合治疗有一定的优越性,它不仅使脑AVM治愈率明显提高,而且与治疗相关的各种并发症和病死率也明显降低。Abstract: Objective: To evaluate the efficacy of multimodality treatment of cerebral arteriovenous malformations(AVMs) with surgery, embolization and γknife radiation. Methods : A retrospective analysis of 43 cases of cerebral AVMs applied with multimodality treatment in our department From March 2002 to July 2009 has been made, meanwhile we have analyzed and assessed the clinical characteristics and treatment outcome of these 43 patients with cerebral AVMs. Results : Patients received multimodality treatment with embolization followed by surgery(n=3), embolization followed by γknife radiation(n=26), surgery followed by γknife radiation(n=11), or embolization, surgery, and γknife radiation(n=3). Postoperative followup of 28 cases, the followup time is 4 months to 7 years and 6 months. GOS score 5 in 25 cases, who can be able to return to work or school. GOS score 4 in 2 cases, who can be able to live independently. GOS score 1 in 1 case, who is dead. Conclusion : In the cerebral AVMs which are large, or located within or immediately adjacent to eloquent regions of the brain, or have deep venous drainage, multimodality treatment has some superiority. It can not only improve the cure rate of cerebral AVMs significantly, but also reduce the treatmentrelated complications and mortality.