To evaluate the tberapeutlc effect of diode laser photocoagulation trearment on eases of diabetic retinopathy with certain degree of refractive media opacity. METHODS: Diode laser photocoagulation treatment were given to 36 selected cases (40 eyes )of diabetic retinopathy who can not be treated with argon laser because of refractive media opacity, Before and after treatment,visual acuity and fundus were examined and fundus fluorescein angiography and retinal color photographp were taken. The follow-up period was 8~14 months (with an average of 11 months) RESULT:Visual acuity were improved or maintained in 29 eyes(about 73%)of the 34 eyes of proliferative diabetic retinopathy ,retinal new vessels partly or entirely regressed in 25 eyes(about 74%). CONCLUTION ;Tbe effect of diode laser treatment on patients with diabetic retinopatby with certain degree of lens/vitreous opacity is relatively safisfactory. (Chin J Ocul Fundus Dis,1996,12:111- 113)
ObjectiveTo investigate the clinical outcome and therapeutic efficacy of short-pulse pattern scan laser (PASCAL) photocoagulation for diabetic retinopathy (DR). MethodsForty-three DR patients (70 eyes) including 19 males (32 eyes) and 24 females (38 eyes) underwent short-pulse PASCAL pan-retinal photocoagulation (PRP). There were 24 patients (42 eyes) with proliferative diabetic retinopathy (PDR) and 19 patients (28 eyes) with severe non-proliferative diabetic retinopathy (NPDR). The best corrected visual acuity was better than or equal to 0.1 in 62 eyes, worse than 0.1 in 8 eyes. Diabetic macular edema was found in 18 eyes. Short-pulse PASCAL PRP was applied with multi-spot arrays. Macular edema was treated by PASCAL macular mode (MAC A + MAC B) and/or single spot. Visual acuity and fundus examinations were analyzed at the one-year follow-up procedure. ResultsOne year after short-pulse PASCAL treatment, the final visual acuity was improved in 10 eyes, stable in 53 eyes, decreased in 7 eyes; macular edema was relieved in 38 eyes, aggravated in 12 eyes, and stable in 20 eyes. Of 42 eyes with PDR, neovascularization were regressed in 20 eyes, uncontrolled in 11 eyes which experienced additional photocoagulation (1-2 times) during the follow-up. Among the 11 uncontrolled eyes, 3 eyes (3/11) received vitrectomy due to vitreous hemorrhage. ConclusionPASCAL might stabilize the progress of diabetic retinopathy safely and effectively.
Diabetic retinopathy is a serious complication of diabetes and is the leading cause of blindness in people with diabetes. At present, there are many views on the pathogenesis of diabetic retinopathy, including the changes of retinal microenvironment caused by high glucose, the formation of advanced glycation end products, oxidative stress injury, inflammatory reaction and angiogenesis factor. These mechanisms produce a common pathway that leads to retinal degeneration and microvascular injury in the retina. In recent years, cell regeneration therapy plays an increasingly important role in the process of repairing diseases. Different types of stem cells have neurological and vascular protection for the retina, but the focus of the target is different. It has been reported that stem cells can regulate the retinal microenvironment and protect the retinal nerve cells by paracrine production, and can also reduce immune damage through potential immunoregulation, and can also differentiate into damaged cells by regenerative function. Combined with the above characteristics, stem cells show the potential for the repair of diabetic retinopathy, this stem cell-based regenerative therapy for clinical application provides a pre-based evident. However, in the process of stem cell transplantation, homogeneity of stem cells, cell delivery, effective homing and transplantation to damaged tissue is still a problem of cell therapy.
Diabetic macular ischemia (DMI) is one of the manifestation of diabetic retinopathy (DR). It could be associated with diabetic macular edema (DME), which may affect the vision of DR patients. FFA is the gold standard for the diagnosis of DMI, but with the advent of OCT angiography, a more convenient and diversified method for the evaluation of DMI has been developed, which makes more and more researchers start to study DMI. Intravitreal injection of anti-VEGF has become the preferred treatment for DME. When treating with DME patients, ophthalmologists usually avoid DMI patients. But if intravitreal anti-VEGF should be the contradiction of DME is still unclear. To provide references to the research, this article summarized the risk factors, assessment methods and influence of DMI. This article also analyzed the existing studies, aiming to offer evidences to a more reasonable and effective treatment decision for DME individual.
Objective To observe the effect of panretinal photocoagulation (PRP) on the expression of cyclooxygenase-2 (COX-2), vascular endothelial cell growth factor (VEGF) in epiretinal membrane of proliferative diabetic retinopathy (PDR). Methods Atotal of 35 patients (35 eyes) with PDR and underwent plana vitrectomy were enrolled in this study. The patients were divided into non-PRP group (19 patients, 19 eyes) and PRP group (16 patients, 16 eyes) depends on if they had received PRP before surgery. The epiretinal membranes stripped during operation were collected for pathological examination. The histopathological features was observed by haematoxylin and eosin stain. The expression of CD34, COX-2 and VEGF, and microvessel density (MVD) were measured by immunohistochemistry method. Results Many new dispersed capillary blood vessels were found in the thick epiretinal membranes of non-PRP group, while scattered small blood vessels were found in the relatively thin epiretinal membranes of PRP group. MVD value was (7.42±1.39) in the non-PRP group and (4.56±1.22) in the PRP group, which was lower than the non-PRP group (t=6.41, P<0.01). The expression of CD34, COX-2 and VEGF in the tissues of epiretinal membrane in PRP group were obviously lower than the non-PRP group (t=6.147, 5.944, 7.445; P<0.01). Conclusion PRP can effectively inhibit the expression of COX-2 and VEGF in epiretinal membrane of PRP patients.
Objective To investigate the therapeutic effect of different wavelength krypton lasers on diabetic retinopathy. Methods A total of 55 eyes (35 cases) with diabetic retinopathy underwent different wavelength k rypton lasers photocoagulation treatment, according to the different manifestati on of the affected eyes. The visual acuity, intraocular pressure,visual field,visual evoked potential were examined, and slit-lamp, ophthalmoscopy, Bultraso nography, and fundus fluorescein angiography were performed preoperatively. The patients were followed up for at least 12 months after krypton laser treatment. Results The resulting effect on visual acuity after 12 months of photocoagulation in this series revealed that, 20 eyes (36.4%) i mproved, 34 eyes (61.8%) remained no change, and one eye (1.8%) decreased. Conclusions Different wavelength krypton lasers photoco agulation can be used in treatment of diabetic retinopathy and can improve the visual acuity at certain extent. (Chin J Ocul Fundus Dis, 2001,17:178-180)
Objective Methods Ninety male Wister rats were randomly divided into normal control group, diabetic group and FTY720 group, thirty rats in each group. Diabetes was induced by giving a single intraperitoneal injection of streptozocin. FTY720 group was administered with FTY720 at a dose of 0.3 mg/kg by oral gavage daily for 3 months after establishment of diabetes. All rats were used for experiments following intervention for 3 months in FTY720 group. Immunohistochemical staining was used to observe the expression and distribution of intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1), and the positive cells were counted. Real-time reverse transcription PCR was used to measure mRNA expression of ICAM-1 and VCAM-1. Fluorescein isothiocyanate-Concanavalin A perfusion was used to detect retinal leukocytes adhesion. Evans blue (EB) perfusion was used to analyze retinal vascular permeability. Immunofluorescence staining was used to detect retinal inflammatory cells infiltration. Results In diabetic group, both ICAM-1(t=12.81) and VCAM-1 (t=11.75) positive cells as well as their mRNA expression (t=16.14, 9.59) were increased compared with normal control group, with statistical significance (P < 0.05). In FTY720 group, both ICAM-1(t=-9.93) and VCAM-1 (t=-6.61) positive cells as well as their mRNA expression (t=-15.28, -6.10) were decreased compared with diabetic group, with statistical significance (P < 0.05). Retinal leukocytes adhesion (t=16.32) and EB permeability (t=17.83) were increased in diabetic group compared with normal control group, while they were decreased in FTY720 group compared with diabetic group(t=-9.93, -11.82),with statistical significance (P < 0.05). There were many CD45 positive leukocytes infiltration in retina of diabetic group, including CD11b positive macrophage/activated microglia, while both of them were little in FTY720 group. Conclusions FTY720 can decrease retinal leukocytes adhesion, reduce retinal vascular permeability and inflammatory cells infiltration, which is associated with down-regulation of ICAM-1 and VCAM-1.
There are many topics in clinical studies of diabetic retinopathy (DR). The current hot topics include the relationship between DR and systemic diseases, major factors for initiation and progression of DR, early DR screening strategies, DR prevention strategies and how to improve the therapeutic effects of DR. However, due to the complexity of DR pathogenesis, multiple risk factors, long cycle of DR prevention and control, it is difficult to exclude all the confounding factors in the DR clinical research. From the long-term perspective, delaying the occurrence and progression of DR and establishing an efficient and practical prevention and control system is the focus of the future DR research in China.
Panretinal photocoagulation (PRP) and macular photocoagulation (MPC) are the gold standard treatments for proliferative diabetic retinopathy (DR) and diabetic macular edema. With the development of equipment and technology advancement, photocoagulation has been gradually applied in many Eye Centers all over China. However, there are still several problems such as no standardized guideline and undesirable therapeutic effects. In this article we will summarize the indications and techniques of photocoagulation, and when and how to apply drug treatments for retinal diseases; aim at improving the criterion and clinical effects of photocoagulation.
Objective To observe the efficacy of intravitreal injection of ranibizumab (IVR) for different patterns of optical coherence tomography (OCT) of diabetic macular edema and the relationship between integrity of ellipsoidal zone and visual acuity outcomes. Methods Eighty-five IVR treated eyes were enrolled. The examination of BCVA was according to Early Treatment Diabetic Retinopathy Study, and the results were recorded as logarithm of the minimum angle of resolution (logMAR). Frequency-domain OCT was used to measure the central foveal thickness (CFT) and the integrity of ellipsoidal zone. All eyes were classified as diffuse macular edema (DRT group, 31 eyes), cystoid macular edema (CME group, 29 eyes), and serous retinal detachment (SRD group, 25 eyes). All the patients were treated with intravitreal injection of 0.05 ml (0.5 mg) ranibizumab. The mean follow-up time was (9.21+3.56) months after IVR treatment. The changes of BCVA and CFT in 3 groups were compared and analyzed after 3, 6 and 12 months. According to visual acuity at different ranges, the relationship between integrity of ellipsoidal zone and BCVA was analyzed. Results Compared with the average logMAR BCVA before treatment, except for 12 months after treatment in group SRD (t=2.104,P=0.053), the average logMAR BCVA after IVR at 3 months, 6 months and 12 months improved in DRT group (t=7.847, 6.771, 6.426;P=0.000, 0.000, 0.000), CME group (t=8.560, 6.680, 5.082;P=0.000, 0.000, 0.000) and SRD group (t=5.161, 3.968, 2.104;P=0.000, 0.001, 0.053). The average logMAR BCVA of the DRT group was lesser than that in CME and SRD group after 12 months treatment (t=–2.043, –3.434;P=0.030, 0.001). The average CFT after IVR at 3 months, 6 months and 12 months reduced significantly in DRT group (t=12.746, 10.687, 9.425;P=0.000, 0.000, 0.000), CME group (t=13.400, 11.460, 10.169;P=0.000, 0.000, 0.000), and SRD group (t=11.755, 10.100, 9.173;P=0.000, 0.000, 0.000). After 12 months of treatment, the average CFT of the SRD group was thicker than that in DRT group and CME group (t=–3.251, –1.227;P=0.003, 0.025); there was significant difference in the integrity of ellipsoidal zone among 3 groups (χ2=1.267,P=0.531). The results showed that there were significant differences in the integrity of ellipsoidal zone with different ranges of BCVA before and after 12 months treatment (χ2=20.145, 41.035;P=0.000, 0.000). Conclusions IVR could significantly improve the visual acuity of different patterns of DME, reduced the CFT, and had the best efficacy in the DRT group. There was relationship between the integrity of ellipsoidal zone and the visual acuity outcomes.