Risk prediction models for postoperative pulmonary complications (PPCs) can assist healthcare professionals in assessing the likelihood of PPCs occurring after surgery, thereby supporting rapid decision-making. This study evaluated the merits, limitations, and challenges of these models, focusing on model types, construction methods, performance, and clinical applications. The findings indicate that current risk prediction models for PPCs following lung cancer surgery demonstrate a certain level of predictive effectiveness. However, there are notable deficiencies in study design, clinical implementation, and reporting transparency. Future research should prioritize large-scale, prospective, multi-center studies that utilize multiomics approaches to ensure robust data for accurate predictions, ultimately facilitating clinical translation, adoption, and promotion.
ObjectiveTo analyze the influencing factors of preoperative frailty in elderly esophageal cancer patients, and to construct and evaluate a nomogram model. MethodsElderly esophageal cancer patients hospitalized in the First Affiliated Hospital of Navy Medical University from January 2022 to August 2024 were selected. General information of the patients was collected, and the patients were divided into a frailty group and a non-frailty group according to the frailty score. Single-factor and multi-factor logistic regression analysis were used to screen the independent influencing factors of preoperative frailty in elderly esophageal cancer patients, and the nomogram model was constructed and evaluated accordingly. ResultsA total of 332 elderly esophageal cancer patients were included, including 256 males and 76 females, with an average age of (69.71±5.95) years. The incidence of preoperative frailty was 45.48%. Multivariate logistic regression analysis showed that age≥70 years [OR=2.986, 95%CI (1.796, 4.965), P<0.001], basic diseases≥2 types [OR=3.129, 95%CI (1.794, 5.457), P=0.012], self-care ability [OR=2.599, 95%CI (1.512, 4.467), P<0.001], and depression [OR=3.784, 95%CI (2.135, 6.706), P=0.005] were independent risk factors for preoperative frailty in elderly esophageal cancer patients. The nomogram model was constructed as follows: Z=−2.038+1.094×(age≥70 years)+1.141×(basic diseases≥2 types)+0.955×self-care ability (non-independent)+1.331×depression, with an area under the receiver operating characteristic curve of 0.802 [95%CI (0.756, 0.847)], and the sensitivity and specificity were 78.8% and 65.2%, respectively. The goodness of fit test showed that the model had good discrimination and calibration (χ2=6.64, P=0.355). ConclusionAge≥70 years, basic diseases≥2 types, self-care ability (non-independent), and depression are independent risk factors for preoperative frailty in elderly esophageal cancer patients. The constructed nomogram model shows good predictive performance and can identify elderly esophageal cancer patients with preoperative frailty, providing a reference for the formulation of corresponding intervention measures.
ObjectiveTo systematically evaluate the risk prediction models for postoperative delirium in adults with cardiac surgery. MethodsThe SinoMed, CNKI, Wanfang, VIP, PubMed, EMbase, Web of Science, and Cochrane Library databases were searched to collect studies on risk prediction models for postoperative delirium in cardiac surgery published up to January 29, 2025. Two researchers screened the literature according to inclusion and exclusion criteria, used the PROBAST bias tool to assess the quality of the literature, and conducted a meta-analysis of common predictors in the model using Stata 17.0 software. ResultsA total of 21 articles were included, establishing 45 models with 28733 patients. Age, cardiopulmonary bypass time, history of diabetes, history of cerebrovascular disease, and gender were the top five common predictors. The area under the curve (AUC) of the 45 models ranged from 0.6 to 0.926. Fourteen out of the 21 studies had good applicability, while the applicability of the remaining seven was unclear; 20 studies had a high risk of bias. Meta-analysis showed that the incidence of postoperative delirium in adults with cardiac surgery was 18.6% [95%CI (15.7%, 21.6%)], and age [OR=1.04 (1.04, 1.05), P<0.001], history of cerebrovascular disease [OR=1.76 (1.46, 2.06), P<0.001], gender [OR=1.73 (1.43, 2.03), P<0.001], minimum mental state examination score [OR=1.00 (0.82, 1.17), P<0.001], and length of ICU stay [OR=5.59 (4.29, 6.88), P<0.001] weer independent influencing factors of postoperative delirium after cardiac surgery. ConclusionThe risk prediction models for postoperative delirium after cardiac surgery have good predictive performance, but there is a high overall risk of bias. In the future, large-sample, multicenter, high-quality prospective clinical studies should be conducted to construct the optimal risk prediction model for postoperative delirium in adults with cardiac surgery, aiming to identify and prevent the occurrence of postoperative delirium as early as possible.
Objective To scoping review the risk prediction models for sarcopenia in China was conducted, and provide reference for scientific prevention and treatment of the disease and related research. Methods We systematically searched PubMed, Web of Science, Cochrane Library, Embase, China Knowledge Network, China Biomedical Literature Database, Wanfang Database, and Weipu Database for literature related to myasthenia gravis prediction models in China, with a time frame from the construction of the database to April 30, 2024 for the search. The risk of bias and applicability of the included literature were assessed, and information on the construction of myasthenia gravis risk prediction models, model predictors, model presentation form and performance were extracted. Results A total of 25 literatures were included, the prevalence of sarcopenia ranged from 12.16% to 54.17%, and the study population mainly included the elderly, the model construction methods were categorized into two types: logistic regression model and machine learning, and age, body mass index, and nutritional status were the three predictors that appeared most frequently. Conclusion Clinical caregivers should pay attention to the high-risk factors for the occurrence of sarcopenia, construct models with accurate predictive performance and high clinical utility with the help of visual model presentation, and design prospective, multicenter internal and external validation methods to continuously improve and optimize the models to achieve the best predictive effect.
Surgical risk prediction is to predict postoperative morbidity and mortality with internationally authoritative mathematical models. For patients undergoing high-risk cardiac surgery, surgical risk prediction is helpful for decision-making on treatment strategies and minimization of postoperative complications, which has gradually arouse interest of cardiac surgeons. There are many risk prediction models for cardiac surgery in the world, including European System for Cardiac Operative Risk Evaluation (EuroSCORE), Ontario Province Risk (OPR)score, Society of Thoracic Surgeons (STS)score, Cleveland Clinic risk score, Quality Measurement and Management Initiative (QMMI), American College of Cardiology/American Heart Association (ACC/AHA)Guidelines for Coronary Artery Bypass Graft Surgery, and Sino System for Coronary Operative Risk Evaluation (SinoSCORE). All these models are established from the database of thousands or ten thousands patients undergoing cardiac surgery in a specific region. As different sources of data and calculation imparities exist, there are probably bias and heterogeneities when the models are applied in other regions. How to decrease deviation and improve predicting effects had become the main research target in the future. This review focuses on the progress of risk prediction models for patients undergoing cardiac surgery.
ObjectiveTo summarize the current status and update of the use of medical imaging in risk prediction of pancreatic fistula following pancreaticoduodenectomy (PD).MethodA systematic review was performed based on recent literatures regarding the radiological risk factors and risk prediction of pancreatic fistula following PD.ResultsThe risk prediction of pancreatic fistula following PD included preoperative, intraoperative, and postoperative aspects. Visceral obesity was the independent risk factor for clinically relevant postoperative pancreatic fistula (CR-POPF). Radiographically determined sarcopenia had no significant predictive value on CR-POPF. Smaller pancreatic duct diameter and softer pancreatic texture were associated with higher incidence of pancreatic fistula. Besides the surgeons’ subjective intraoperative perception, quantitative assessment of the pancreatic texture based on medical imaging had been reported as well. In addition, the postoperative laboratory results such as drain amylase and serum lipase level on postoperative day 1 could also be used for the evaluation of the risk of pancreatic fistula.ConclusionsRisk prediction of pancreatic fistula following PD has considerable clinical significance, it leads to early identification and early intervention of the risk factors for pancreatic fistula. Medical imaging plays an important role in this field. Results from relevant studies could be used to optimize individualized perioperative management of patients undergoing PD.
ObjectiveTo investigate relationship of long non-coding RNA FoxP4-AS1 expression with lymph node metastasis (LNM) of papillary thyroid carcinoma (PTC).MethodsReal time fluorescent quantitative polymerase chain reaction was used to detect the expression level of FoxP4-AS1 in 52 cases of PTC tissues and corresponding adjacent tissues, PTC cells (TPC-1, B-CPAP, K1), and normal thyroid follicular epithelial cells (Nthy-ori3-1). Univariate and multivariate analysis were used to identify the influencing factors of LNM in PTC. Receiver operating characteristic (ROC) curve was drawn to evaluate the predictive value of influencing factors of LNM in PTC.ResultsThe expression level of FoxP4-AS1 in the PTC tissues was significantly decreased as compared with the corresponding adjacent tissues (t=7.898, P<0.001), which in the different cells had statistical difference (F=29.866, P<0.001): expression levels in the TPC-1 and K1 cells were lower than Nthy-ori3-1 cells (P<0.05) and in the B-CPAP cells and Nthy-ori3-1 cells had no statistical difference (P>0.05) by multiple comparisons. Univariate analysis showed that the extraglandular invasion (χ2=4.205, P=0.040)and low expression of FoxP4-AS1 (χ2=7.144, P=0.008) were the influencing factors of LNM in PTC. Binary logistic regression analysis showed that extraglandular invasion [OR=9.455, 95%CI (1.120, 79.835), P=0.039] and low expression ofFoxP4-AS1[OR=5.437, 95%CI (1.488, 19.873), P=0.010] were risk factors for LNM of PTC. The area under the ROC curve ofFoxP4-AS1,extraglandular invasion alone, and combination of the two were 0.679, 0.656, and 0.785, respectively.ConclusionsFoxP4-AS1 is down-regulated in PTC. Low level of FoxP4-AS1 is a risk factor for LNM of PTC. Combined detection of expression level of FoxP4-AS1 and extraglandular invasion has a high predictive value for LNM of PTC.
ObjectiveTo construct a demand model for electronic medical record (EMR) data quality in regards to the lifecycle in machine learning (ML)-based disease risk prediction, to guide the implementation of EMR data quality assessment. MethodsReferring to the lifecycle in ML-based predictive model, we explored the demand for EMR data quality. First, we summarized the key data activities involved in each task on predicting disease risk with ML through a literature review. Second, we mapped the data activities in each task to the associated requirements. Finally, we clustered those requirements into four dimensions. ResultsWe constructed a three-layer structured ring to represent the demand model for EMR data quality in ML-based disease risk prediction research. The inner layer shows the seven main tasks in ML-based predictive models: data collection, data preprocessing, feature representation, feature selection and extraction, model training, model evaluation and optimization, and model deployment. The middle layer is the key data activities in each task; and the outer layer represents four dimensions of data quality requirements: operability, completeness, accuracy, and timeliness. ConclusionThe proposed model can guide real-world EMR data governance, improve its quality management, and promote the generation of real-world evidence.
Objective To systematically evaluate risk prediction models for acute exacerbation of chronic obstructive pulmonary disease (COPD), and provide a reference for early clinical identification. Methods The literature on the risk prediction models of acute exacerbation of COPD published by CNKI, VIP, Cochrane, Embase and Web of Science database was searched in Chinese and English from inception to April 2022, and relevant studies were collected on the development of risk prediction models for acute exacerbations of COPD. After independent screening of the literature and extraction of information by two independent researchers, the quality of the included literature was evaluated using the PROBASTA tool. Results Five prospective studies, one retrospective case-control study and seven retrospective cohort studies were included, totally 13 papers containing 24 models. Twelve studies (92.3%) reported the area under the receiver operator characteristic curve ranging 0.66 to 0.969. Only five studies reported calibrated statistics, and three studies were internally and externally validated. The overall applicability of 13 studies was good, but there was a high risk of bias, mainly in the area of analysis. Conclusions The existing predictive risk models for acute exacerbations of COPD are unsatisfactory, with wide variation in model performance, inappropriate and incomplete inclusion of predictors, and a need for better ways to develop and validate high-quality predictive models. Future research should refine the study design and study report, and continue to update and validate existing models. Secondly medical staff should develop and implement risk stratification strategies for acute exacerbations of COPD based on predicted risk classification results in order to reduce the frequency of acute exacerbations and to facilitate the rational allocation of medical resources.
Objective To analyze the risk factors affecting the occurrence of arrhythmia after esophageal cancer surgery, construct a risk prediction model, and explore its clinical value. Methods A retrospective analysis was conducted on the clinical data of patients who underwent radical esophagectomy for esophageal cancer in the Department of Thoracic Surgery at Anhui Provincial Hospital from 2020 to 2023. Univariate and multivariate analyses were used to screen potential factors influencing postoperative arrhythmia. A risk prediction model for postoperative arrhythmia was constructed, and a nomogram was drawn. The predictive performance of the model was then validated. Results A total of 601 esophageal cancer patients were randomly divided into a modeling group (421 patients) and a validation group (180 patients) at a 7 : 3 ratio. In the modeling group, patients were further categorized into an arrhythmia group (188 patients, 44.7%) and a non-arrhythmia group (233 patients, 55.3%) based on whether they developed postoperative arrhythmia. Among those with postoperative arrhythmia, 43 (10.2%) patients had atrial fibrillation (AF), 12 (2.9%) patients had atrial premature beats, 15 (3.6%) patients had sinus bradycardia, and 143 (34%) patients had sinus tachycardia. Some patients exhibited multiple arrhythmias, including 14 patients with AF combined with sinus tachycardia, 7 patients with AF combined with atrial premature beats, and 3 patients with AF combined with sinus bradycardia. Univariate analysis revealed that a history of hypertension, heart disease, pulmonary infection, acute respiratory distress syndrome, postoperative hypoxia, anastomotic leakage, and delirium were risk factors for postoperative arrhythmia in esophageal cancer patients (P<0.05). Multivariate logistic regression analysis showed that a history of heart disease, pulmonary infection, and postoperative hypoxia were independent risk factors for postoperative arrhythmia after esophageal cancer surgery (P<0.05). The area under the receiver operating characteristic curve (AUC) of the constructed risk prediction model for postoperative arrhythmia was 0.710 [95% CI (0.659, 0.760)], with a sensitivity of 0.617 and a specificity of 0.768. Conclusion A history of heart disease, pulmonary infection, and postoperative hypoxia are independent risk factors for postoperative arrhythmia after esophageal cancer surgery. The risk prediction model constructed in this study can effectively identify high-risk patients for postoperative arrhythmia, providing a basis for personalized interventions.