Objective To study the effect of recombinant lentiviral vector mediated human hepatocyte growth factor (hHGF) gene-modified bone marrow mesenchymal stem cells (BMSCs) on the immunological rejection after allograft l iver transplantation in rats, and to reveal the mechanism of immune tolerance. Methods Eight male Sprague Dawley (SD)rats of clean grade (aged 3 to 4 weeks, weighing 75-85 g) were selected for the isolation and culture of BMSCs; 64 adult male SD rats of clean grade (weighing 200-250 g) were used as donors; and 64 adult male Wistar rats of clean grade (weighing 230-280 g) were used as receptors. After establ ishing a stable model of rat allogeneic l iver transplantation, 1 mL sal ine, 2 ×106/mL of BMSCs 1 mL, 2 × 106/mL of BMSCs/green fluorescent protein 1 mL, and 2 × 106/mL of BMSCs/hHGF 1 mL were injected via the portal vein in groups A, B, C, and D respectively. Then the survival time of the rats was observed. The hepatic function was determined and the histological observation of the l iver was performed. The hHGF mRNA expression was detected by RT-PCR, the level of cytokine including hHGF, interleukin 2 (IL-2), IL-4, IL-10, and interferon γ (IFN-γ) by ELISA assay, the level of apoptosis by TUNEL method, and the expression level of prol iferating cell nuclear antigen (PCNA) by immunohistochemical method. Results The survival time of group D was significantly higher than that of groups A, B, and C (P lt; 0.01); the survival time of groups B and C was significantly higher than that of group A (P lt; 0.01), but there was no significant difference between group B and group C (P gt; 0.05). RT-PCR demonstrated the transcription of hHGF mRNA in the grafts of group D; the serum cytokine hHGF reached to (6.2 ± 1.0) ng/mL. Compared with groups B and C, group D exhibited significant inhibitory effect, significantly improved l iver function, and showed mild acute rejection. In addition, the levels of cytokine IL-2 and IFN-γ decreased; the levels of cytokine IL-4 and IL-10 increased; the level of apoptosis reduced; and the expression level of PCNA increased. Except for the expression of IL-4 (P gt; 0.05), there were significant differences in the other indexes between group D and groups B, C (P lt; 0.05). Conclusion BMSCs/hHGF implanting to rat l iver allograft via portal vein can induce immune tolerance. Compared with injection of BMSCs alone, BMSCs/hHGF treatment can alleviate acute rejection and prolong the survival time significantly. The immunosuppressive effect of BMSCs/hHGF is correlated with Th2 shifts up of Th1/Th2 shift, reduced apoptosis, promoted l iver regeneration.
OBJECTIVE: To isolate and characterize mesenchymal stem cells (MSCs) derived from bone marrow of Banna minipig inbred line (BMI). METHODS: BMI-MSCs was isolated from bone marrow by density gradient centrifugation and cultured in DMEM (containing 15% bovine serum) at 37 degrees C with humidified 5% CO2. These cultured stem cells were characterized in clonal growth, expression of specific markers and capability of differentiation. RESULTS: Mesenchymal stem cells were proliferative and could be expanded rapidly in vitro. Clonal growth of these cells can be observed when small amount of cells was inoculated. These cells were SH2, SH3, SH4, SB10 and SB21 positive. And it was proved that these cells possess osteo-differentiation ability, up-regulated alkaline phosphatase expression and calcium secretion after osteosupplement was added into the media for several days. CONCLUSION: Mesenchymal stem cells derived from bone marrow of BMI possess the general characters of stem cell.
Objective To investigate the impact of bone marrow mesenchymal stem cell transplantation on a rat model of experimental autoimmune uveitis (EAU) and analyze its immune regulatory mechanisms in vivo.Methods Eighteen Lewis rats were randomly divided into three groups: model control group, intervention group and normal control group, six animals in each group. Human retinal S-antigen peptide (HS-AgP35, 1 mg/ml) was mixed and emulsified with complete Freundprime;s adjuvant and injected into hind foot pad of rats on the first and eighth day to establish the animal model of EAU. For bone marrow mesenchymal stem cell transplantation, 1 ml of cell suspension (2times;106 cells/ml) was injected into tail vein of the intervention group rats on the first day when the emulsified S-antigen was injected. EAU manifestation, pathological change and IFN-gamma; level were evaluated and compared among those three groups after two weeks. Results No abnormal signs were found in the eyes of rats in normal control group. The manifestation grading of the intervention group (two rats at grade 0, three rats at grade 0.5, one rat at grade one) was significantly different from the model control group (one rat at grade one, one rat at grade two, three rats at grade three, one rat at grade four) (P=0.015). The retina of rats in normal control group was ordinary under light microscope. The histopathologrical grading of the intervention group (one rat at grade 0, four rats at grade 0.5,one rat at grade one) and the model control group (four rats at grade three, two rats at grade four) was also statistically different (P<0.01). Furthermore, the IFN-gamma; level in peripheral blood of the intervention group rats declined significantly compared to the model control group (t=9.0574, P=0.01). Conclusions Bone marrow mesenchymal stem cells can inhibit EAU significantly, possibly by lowering the level of IFN-gamma;, thereby reduce the severity of uveitis and improve the condition of uveitis in rats.
Objective Extracellular matrix is one of the focus researches of the adi pose tissue engineering. To investigate the appropriate method to prepare the porcine skeletal muscle acellular matrix and to evaluate the biocompatibility of the matrix. Methods The fresh skeletal muscle tissues were harvested from healthy adult porcine and were sl iced into2-3 mm thick sheets, which were treated by hypotonic-detergent method to remove the cells from the tissue. The matrix was then examined by histology, immunohistochemistry, and scanning electron microscopy. The toxic effects of the matrix were tested by MTT. Human adi pose-derived stem cells (hADSCs) were isolated from adi pose tissue donated by patients with breast cancer, and identified by morphology, flow cytometry, and differentiation abil ity. Then, hADSCs of passage 3 were seeded into the skeletal muscle acellular matrix, and cultured in the medium. The cellular behavior was assessed by calcein-AM (CA) and propidium iodide (PI) staining at 1st, 3rd, 5th, and 7th days after culturing. Results Histology, immunohistochemistry, and scanning electron microscopy showed that the muscle fibers were removed completely with the basement membrane structure; a large number of collagenous matrix presented as regular network, porous-like structure. The cytotoxicity score of the matrix was grade 1, which meant that the matrix had good cytocompatibil ity. The CA and PI staining showed the seeded hADSCs had the potential of spread and prol iferation on the matrix. Conclusion Porcine skeletal muscle acellular matrix has good biocompatibility and a potential to be used as an ideal biomaterial scaffold for adi pose tissue engineering.
Objective To study morphological and biological senescence changes induced by D-galactose in the cultured rat mesenchymal stem cells. Methods After 3rd generations cultured in the DMEM-F12, MSCs were changed into DMEMF12 medium containing 8 g/L D-galatose and cultured to the 6th generations as the inducement group. The comparison were the 6thgenerations which was cultured in the DMEM-F12 medium all along, and then indentified by surface wave. Using flow cytometer to check the comparisons cell cycle change after swing in with 8 g/L D-galatose within the 4 days. In the first 7daysto draw the growth curve to the two groups. Optical and electronic microscope were used to identify the influences of characteristic morphological of mesenchymal stem cells of the two groups, the influences of biological markers were identified by single cell gel electrophoresis and β-galactose dye. Results After treatment with D-galactose, the mesenchymal stem cells displayed morphological and biological changes in the cell senescence with the senescent characteristic morphological markers; 85% of the cells were X-gal dye masculine, and the singal cell gel electrophoresis showed DNA damnification. The flow cytometry showed that 90% of the cells stayed in G 0/G 1, but the cells in S and G 2/M almost disappeared.However, the cells in the control group had no such DNA damages. Conclusion D-galactose can induce senescence of the mesenchymal stem cells, and 8 g/L is the best concentration to do so. This study has provided a good model forthe research of the mesenchymal stem cells senescence.
Objective To study the effect of adenovirus bone morphogenetic protein 2 gene(Ad-BMP-2) transfer inducing mesenchymal stem cells (MSCs) compounded with fibrin gel on repair of rabbit cartilage defect. Methods ①BMP-2 and collagen type Ⅱ in MSCs transferred by Ad-BMP-2 were examined by RT-PCR, aniline dyeing and immunohistochemical analysis in vitro. ②MSCs were cultured in fibrin gel for 9 days, and were examined with electron microscope. ③Fortytwo rabbits suffering from cartilage defect were divided into 3 groups:the defects were treated with Ad-BMP-2 transfer inducing MSCs compounded with fibrin in group A, with MSCs compounded with fibringel in group B and with no implants in group C as control. HE and aniline dyeing, immunohistochemical analysis and biomechanics study were carried out in the 4th, 8thand 12th weeks. Results ①The positive results were observed for BMP-2 and collagen type Ⅱ with RT-PCR on the 3rd day and 5th day respectively, being statisticallysignificant difference when compared with control group(P<0.05). ②Ad-BMP-2 transfer inducing MSCs cultured in fibrin gel were positively stained by aniline dyeing and immunohistochemstry. ③The therapy effect of group A was better than that of the other two groups in histology, biochemistry and biomechanics, and the biomechanic and histological features of repaired cartilage were similar to those of the natural cartilage. Conclusion Ad-BMP-2 can induce the expressionof collagen type Ⅱ and mucopolysaccharide in MSCs by secreting BMP-2, and can reconstruct articular cartilage defects better when compounded with fibrin gel.
ObjectiveTo investigate the effects of silencing P75 neurotrophin receptor (P75NTR) and nerve growth factor (NGF) overexpression on the proliferative activity and ectopic osteogenesis ability of bone marrow mesenchymal stem cells (BMSCs) combined with demineralized bone matrix for heterotopic osteogenesis.MethodsBMSCs of Sprague Dawley (SD) rats were cultured and passaged by adherent isolation method. The third generation BMSCs were transfected with lentivirus mediated P75NTR gene silencing (group B), NGF overexpression gene (group C), P75NTR silencing and NGF overexpression double genes (group D), respectively, and untransfected cells as control (group A). After 7 days of transfection, the expression of fluorescent protein of the target gene was observed by fluorescence microscope; cell counting kit 8 method was used to detect the cells activity for 8 days after transfection; the expressions of P75NTR and NGF proteins in each group were detected by Western blot. The adhesion of BMSCs to demineralized bone matrix (DBM) was observed by inverted phase contrast microscope and scanning electron microscope after transfection of p75NTR silencing and NGF overexpression double genes. After transfection, BMSCs and DBM were co-cultured to prepare 4 groups of tissue engineered bone, which were respectively placed in the dorsal subcutaneous tissue of 8-week-old SD rats to construct subcutaneous ectopic osteogenesis model (n=6). HE staining was performed at 4 and 8 weeks after operation. ALP staining was used to observe the formation of calcium nodules at 8 weeks after operation. The expressions of Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were detected by real-time fluorescent quantitative PCR.ResultsAt 7 days after transfection, there was no fluorescence expression in group A, red fluorescence expression was seen in group B, green fluorescence expression in group C, and red-green compound fluorescence expression in group D. The fluorescence expression rate of target gene was about 70%. Western blot detection showed that the relative expression of P75NTR protein in groups A and C was significantly higher than that in groups B and D, and the relative expression of NGF protein in groups C and D was significantly higher than that in groups A and B (P<0.05). With the passage of time, the cell proliferation activity increased in all groups, especially in group D, which was significantly higher than that in group A at 3-8 days (P<0.05). The results of inverted phase contrast microscope and scanning electron microscope showed that BMSCs could adhere well to DBM. In the subcutaneous ectopic osteogenesis experiment, HE staining showed that at 4 and 8 weeks after operation, the more bone tissue was formed in group D than in the other 3 groups. ALP staining showed that group D had the highest ALP activity and better osteogenic expression. Compared with group A, the relative expressions of Runx2, ALP, and OCN mRNAs in group D were significantly higher than those in group A (P<0.05).ConclusionSilencing P75NTR and NGF overexpression double genes co-transfected BMSCs with DBM to construct tissue engineered bone has good ectopic osteogenic ability. By increasing NGF level and closing P75NTR apoptosis channel, it can not only improve cell activity, but also promote bone tissue regeneration.
Objective Toreview theresearch progress of nucleus pulposus cells phenot ypic markers. Methods The domestic and international l iterature about nucleus pulposus cells phenotypic markers was reviewed extensively and summarized. Results Due to different biomechanical properties,nucleus pulposus cells and articular chondrocytes have differences in morphology and extracellular components such as the ratio of aggrecan to collagen type II α1. Nucleus pulposus cells can be identified by surface marker (CD24), gene markers (hypoxia inducible factor 1α, glucosetransporter protein 1, matrix metalloproteinase 2, vascular endothel ial growth factor A, etc), and various markers (keratin 19 and glypican 3,paired box 1, forkhead box F1 and integrin-binding sialoprotein, etc). Conclusion Nucleus pulposus cells and articular chondrocytes have different phenotypic markers, but nucleus pulposus cells are still lack of specific markers.
Objective To elucidate whether glucose transporters-4 (GLUT-4) takes part in glucose uptake of mesenchymal stem cells (MSCs) and whether Akt gene improves translocation and expression of GLUT-4 in MSCs under hypoxic environment ex vivo. Methods MSCs, transfected by Akt gene and no, were cultured with normoxia (5% CO2) or hypoxia (94%N2, 1%O2 and 5% CO2) at 37 ℃ for 8 h. Glucose uptake was assayed by using radiation isotope 2-[3H]-deoxy-Dglucose (3H-G) and the expression of GLUT-4 protein and mRNA was assayed by immunocytochemistry, Western blot and RT-PCR, respectively. Results ①3 H-G intake of MSCs was significantly increased in hypoxiatransfection group than that in hypoxia-non-transfection 〔(1.39±0.13) fold, P<0.05〕, but which was lower than that in normoxia-non-transfection group, P<0.05. ②GLUT-4 was expressed by MSCs under any conditions. Compared with normoxia-non-transfection group, hypoxia decreased the expressions of GLUT-4 mRNA and protein significantly (P<0.05). ③Compared with hypoxianontransfection group, the expression of GLUT-4 〔mRNA(1.756±0.152) fold, total protein in cell (1.653±0.312) fold, protein in plasma membrane (2.041±0.258) fold〕 was increased in hypoxia-transfection group significantly (P<0.05), but which was lower than that in normoxianontransfection group (P<0.05). ④There was significantly positive relation between 3H-G intake and GLUT-4 protein expression in plasma membrane (r=0.415, P=0.001).Conclusion GLUT-4 may take part in glucose uptake of MSCs, and the capability of Akt gene to improve MSCs anti-hypoxia may be finished by its role in increasing the expression and translocation of GLUT-4.
ObjectiveTo investigate the effect of transforming growth factorβ1 (TGF-β1) and basic fibroblast growth factor 1 (bFGF-1) on the cellular activities, prol iferation, and expressions of ligament-specific mRNA and proteins in bone marrow mesenchymal stem cells (BMSCs) and ligament fibroblasts (LFs) after directly co-cultured. MethodsBMSCs from 3-month-old Sprague Dawley rats were isolated and cultured using intensity gradient centrifugation. LFs were isolated using collagenase. The cells at passage 3 were divided into 6 groups: non-induced BMSCs group (group A), non-induced LFs group (group B), non-induced co-cultured BMSCs and LFs group (group C), induced BMSCs group (group D), induced LFs group (group E), and induced co-cultured BMSCs and LFs group (group F). The cellular activities and prol iferation were examined by inverted contrast microscope and MTT; the concentrations of collagen type Ⅰ and type Ⅲ were determined by ELISA; and mRNA expressions of collagen types I andⅢ, fibronectin, tenascin C, and matrix metalloproteinase 2 (MMP-2) were measured by real-time fluorescent quantitative PCR. ResultsA single cell layer formed in the co-cultured cells under inverted contrast microscope. Group F had fastest cell fusion ( > 90%). The MTT result indicated that group F showed the highest absorbance (A) value, followed by group D, and group B showed the lowest A value at 9 days after culture, showing significant difference (P < 0.05). Moreover, the result of ELISA showed that group F had the highest concentration of collagen type Ⅰ and type Ⅲ (P < 0.05); the concentration of collagen type Ⅲ in group E was significantly higher than that in group D (P < 0.05), but no significant difference was found in the concentration of collagen type Ⅰ between 2 groups (P > 0.05). The ratios of collagen type Ⅰ to type Ⅲ were 1.17, 1.19, 1.10, 1.25, 1.17, and 1.18 in groups A-F; group D was higher than the other groups. The real-time fluorescent quantitative PCR results revealed that the mRNA expressions of collagen type Ⅰ and type Ⅲ and fibronectin were highest in group F; the expression of tenascin C was highest in group D; the expression of MMP-2 was highest in group E; and all differencs were significant (P < 0.05). ConclusionDirectly co-cultured BMSCs and LFs induced by TGF-β1 and bFGF-1 have higher cellular activities, proliferation, and expressions of ligament-specific mRNA and protein, which can be used as a potential source for ligament tissue engineering.