ObjectiveTo explore the feasibility of three-dimensional (3D) bioprinted adipose-derived stem cells (ADSCs) combined with gelatin methacryloyl (GelMA) to construct tissue engineered cartilage.MethodsAdipose tissue voluntarily donated by liposuction patients was collected to isolate and culture human ADSCs (hADSCs). The third generation cells were mixed with GelMA hydrogel and photoinitiator to make biological ink. The hADSCs-GelMA composite scaffold was prepared by 3D bioprinting technology, and it was observed in general, and observed by scanning electron microscope after cultured for 1 day and chondrogenic induction culture for 14 days. After cultured for 1, 4, and 7 days, the composite scaffolds were taken for live/dead cell staining to observe cell survival rate; and cell counting kit 8 (CCK-8) method was used to detect cell proliferation. The composite scaffold samples cultured in cartilage induction for 14 days were taken as the experimental group, and the composite scaffolds cultured in complete medium for 14 days were used as the control group. Real-time fluorescent quantitative PCR (qRT-PCR) was performed to detect cartilage formation. The relative expression levels of the mRNA of cartilage matrix gene [(aggrecan, ACAN)], chondrogenic regulatory factor (SOX9), cartilage-specific gene [collagen type Ⅱ A1 (COLⅡA1)], and cartilage hypertrophy marker gene [collagen type ⅩA1 (COLⅩA1)] were detected. The 3D bioprinted hADSCs-GelMA composite scaffold (experimental group) and the blank GelMA hydrogel scaffold without cells (control group) cultured for 14 days of chondrogenesis were implanted into the subcutaneous pockets of the back of nude mice respectively, and the materials were taken after 4 weeks, and gross observation, Safranin O staining, Alcian blue staining, and collagen type Ⅱ immunohistochemical staining were performed to observe the cartilage formation in the composite scaffold.ResultsMacroscope and scanning electron microscope observations showed that the hADSCs-GelMA composite scaffolds had a stable and regular structure. The cell viability could be maintained at 80%-90% at 1, 4, and 7 days after printing, and the differences between different time points were significant (P<0.05). The results of CCK-8 experiment showed that the cells in the scaffold showed continuous proliferation after printing. After 14 days of chondrogenic induction and culture on the composite scaffold, the expressions of ACAN, SOX9, and COLⅡA1 were significantly up-regulated (P<0.05), the expression of COLⅩA1 was significantly down-regulated (P<0.05). The scaffold was taken out at 4 weeks after implantation. The structure of the scaffold was complete and clear. Histological and immunohistochemical results showed that cartilage matrix and collagen type Ⅱ were deposited, and there was cartilage lacuna formation, which confirmed the formation of cartilage tissue.ConclusionThe 3D bioprinted hADSCs-GelMA composite scaffold has a stable 3D structure and high cell viability, and can be induced differentiation into cartilage tissue, which can be used to construct tissue engineered cartilage in vivo and in vitro.
Objective To explore the effectiveness of computer-aided technology in the treatment of primary elbow osteoarthritis combined with stiffness under arthroscopy. Methods The clinical data of 32 patients with primary elbow osteoarthritis combined with stiffness between June 2018 and December 2020 were retrospectively analyzed. There were 22 males and 10 females with an average age of 53.4 years (range, 31-71 years). X-ray film and three-dimensional CT examinations showed osteophytes of varying degrees in the elbow joint. Loose bodies existed in 16 cases, and there were 7 cases combined with ulnar nerve entrapment syndrome. The median symptom duration was 2.5 years (range, 3 months to 22.5 years). The location of bone impingement from 0° extension to 140° flexion of the elbow joint was simulated by computer-aided technology before operation and a three-dimensional printed model was used to visualize the amount and scope of impinging osteophytes removal from the anterior and posterior elbow joint to accurately guide the operation. Meanwhile, the effect of elbow joint release and impinging osteophytes removal was examined visually under arthroscopy. The visual analogue scale (VAS) score, Mayo elbow performance score (MEPS), and elbow range of motion (extension, flexion, extension and flexion) were compared between before and after operation to evaluate elbow function. Results The mean operation time was 108 minutes (range, 50-160 minutes). All 32 patients were followed up 9-18 months with an average of 12.5 months. There was no other complication such as infection, nervous system injury, joint cavity effusion, and heterotopic ossification, except 2 cases with postoperative joint contracture at 3 weeks after operation due to the failure to persist in regular functional exercises. Loose bodies of elbow and impinging osteophytes were removed completely for all patients, and functional recovery was satisfactory. At last follow-up, VAS score, MEPS score, extension, flexion, flexion and extension range of motion significantly improved when compared with preoperative ones (P<0.05). Conclusion Arthroscopic treatment of primary elbow osteoarthritis combined with stiffness using computer-aided technology can significantly reduce pain, achieve satisfactory functional recovery and reliable effectiveness.
A method of ultrasonic simulation based on the FIELD II software platform for carotid artery plaque was proposed according to the analysis for geometrical shape, tissue characteristics and acoustic properties of carotid artery plaques in clinic, and then a simulation system was developed by using the MATLAB graphical user interface (GUI). In the simulation and development, a three-dimensional geometric model of blood vessel with plaques was set up by using the metaball implicit surface technique, and a tissue model was established based on the scatterers with spatial position of gamma random distribution. Comparison of the statistical and geometrical characteristics from simulated ultrasound B-mode images with those based on clinical ones and preset values, the results fully demonstrated the effectiveness of the simulation methods and system.
Objective To compare the effectiveness between three-dimensional (3D) printed porous titanium alloy cage (3D Cage) and poly-ether-ether-ketone cage (PEEK Cage) in the posterior lumbar interbody fusion (PLIF). Methods A total of 66 patients who were scheduled to undergo PLIF between January 2018 and June 2019 were selected as the research subjects, and were divided into the trial group (implantation of 3D Cage, n=33) and the control group (implantation of PEEK Cage, n=33) according to the random number table method. Among them, 1 case in the trial group did not complete the follow-up exclusion study, and finally 32 cases in the trial group and 33 cases in the control group were included in the statistical analysis. There was no significant difference in gender, age, etiology, disease duration, surgical segment, and preoperative Japanese Orthopaedic Association (JOA) score between the two groups (P>0.05). The operation time, intraoperative blood loss, complications, JOA score, intervertebral height loss, and interbody fusion were recorded and compared between the two groups. Results The operations of two groups were completed successfully. There was 1 case of dural rupture complicated with cerebrospinal fluid leakage during operation in the trial group, and no complication occurred in the other patients of the two groups. All incisions healed by first intention. There was no significant difference in operation time and intraoperative blood loss between groups (P>0.05). All patients were followed up 12-24 months (mean, 16.7 months). The JOA scores at 1 year after operation in both groups significantly improved when compared with those before operation (P<0.05); there was no significant difference between groups (P>0.05) in the difference between pre- and post-operation and the improvement rate of JOA score at 1 year after operation. X-ray film reexamination showed that there was no screw loosening, screw rod fracture, Cage collapse, or immune rejection in the two groups during follow-up. At 3 months and 1 year after operation, the rate of intervertebral height loss was significantly lower in the trial group than in the control group (P<0.05). At 3 and 6 months after operation, the interbody fusion rating of trial group was significantly better in the trial group than in the control group (P<0.05); and at 1 year after operation, there was no significant difference between groups (P>0.05). ConclusionThere is no significant difference between 3D Cage and PEEK Cage in PLIF, in terms of operation time, intraoperative blood loss, complications, postoperative neurological recovery, and final intervertebral fusion. But the former can effectively reduce vertebral body subsidence and accelerate intervertebral fusion.
ObjectiveTo explore the effectiveness and safety of closed reduction combined with Taylor three-dimensional space stent fixation in treatment of supracondylar femoral fractures in children.MethodsBetween July 2008 and July 2016, 20 patients with supracondylar femoral fractures were treated with closed reduction combined with Taylor three-dimensional space stent fixation. There were 14 males and 6 females, with an average age of 10.3 years (range, 6-14 years). The cause of injury was traffic accident in 5 cases, falling from high place in 6 cases, and falling in 9 cases. All fractures were closed fractures. Among them, 12 cases were flexion type and 8 cases were straight type. According to AO classification, 12 cases were rated as type A1 and 8 cases as type A2. The fractures were over 0.5-5.0 cm (mean, 2.5 cm) of the epiphysis line. The time from injury to surgery was 2-8 days (mean, 3.5 days). Postoperative knee joint function was evaluated based on the Kolment evaluation criteria.ResultsAll children were followed up 6-24 months (mean, 18.1 months). There was no complication such as nail infection, vascular nerve injury, external fixation looseing, fracture displacement, or re-fracture. All fractures healed and the fracture healing time was 4-6 weeks with an average of 4.5 weeks. The stent removal time was 8-12 weeks (mean, 9.5 weeks). The gait and knee function recovered, and there was no abnormality of the epiphysis. At last follow-up, the knee joint function were excellent in 18 cases and good in 2 cases according to the Kolment evaluation criteria, and the excellent and good rate was 100%.ConclusionClosed reduction combined with Taylor three-dimensional space stent fixation is an effective treatment for the children with supracondylar femoral fractures, with small trauma and rapid recovery. It can avoid damaging the tarsal plate, be high fracture healing rate, and promote the recovery of limb function.
This study aims to explore the diagnosis in patients with Alzheimer's disease (AD) based on magnetic resonance (MR) images, and to compare the differences of bilateral hippocampus in classification and recognition. MR images were obtained from 25 AD patients and 25 normal controls (NC) respectively. Three-dimensional texture features were extracted from bilateral hippocampus of each subject. The texture features that existed significant differences between AD and NC were used as the features in a classification procedure. Back propagation (BP) neural network model was built to classify AD patients from healthy controls. The classification accuracy of three methods, which were principal components analysis, linear discriminant analysis and non-linear discriminant analysis, was obtained and compared. The correlations between bilateral hippocampal texture parameters and Mini-Mental State Examination (MMSE) scores were calculated. The classification accuracy of nonlinear discriminant analysis with a neural network model was the highest, and the classification accuracy of right hippocampus was higher than that of the left. The bilateral hippocampal texture features were correlated to MMSE scores, and the relative of right hippocampus was higher than that of the left. The neural network model with three-dimensional texture features could recognize AD patients and NC, and right hippocampus might be more helpful to AD diagnosis.
ObjectiveTo explore the effectiveness and advantage of three-dimensional (3D) printed navigation templates assisted Ludloff osteotomy in treatment of moderate and severe hallux valgus.MethodsBetween April 2013 and February 2015, 28 patients (28 feet) with moderate and severe hallux valgus who underwent Ludloff osteotomy were randomly divided into 2 groups (n=14). In group A, the patients were treated with Ludloff osteotomy assissted with a 3D printed navigation template. In group B, the patients were treated with traditional Ludloff osteotomy. There was no significant difference in gender, age, affected side, and clinical classification between 2 groups (P>0.05). The operation time and intraoperative blood loss were recorded. The ankle function of the foot at preoperation, immediate after operation, and last follow-up were assessed by the American Orthopedic Foot and Ankle Society (AOFAS) score. Besides, the X-ray film were taken to assess the hallux valgus angle (HVA), intermetatarsal angle (IMA), and the first metatarsal length shortening.ResultsAll patients were followed up 18-40 months (mean, 26.4 months). The operation time and intraoperative blood loss in group A were significantly less than those in group B (P<0.05). The HVA, IMA, and AOFAS scores in groups A and B at immediate after operaton and last follow-up were sinificantly improved when compared with preoperative values (P<0.05); but no significant difference was found between at immediate after operation and at last follow-up (P>0.05). No significant difference was found in HVA and IMA between group A and group B at difference time points (P>0.05). There were significant differences in AOFAS score and the first metatarsal length shortening at immediate after operation and at last follow-up between 2 groups (P<0.05). Except 1 case of metastatic metatarsalgia in group B, there was no other operative complications in both groups.Conclusion3D printed navigation template assisted Ludloff osteotomy can provide accurate preoperative planning and intraoperative osteotomy. It is an ideal method for moderate and severe hallux valgus.
ObjectiveTo evaluate myocardial segmental motion function in left ventricular of patients with rheumatic mitral stenosis by using the technology of real-time three-dimensional echocardiography (RT-3DE). MethodsWe retrospectively analyzed the clinical data of 14 patients with rheumatic mitral stenosis between October and November 2014 in our hospital as a trial group. There were 4 males and 10 females with a mean age of 50.9±9.0 years ranging from 34 to 64 years. We chose 11 healthy individuals as a control group. There were 7 males and 4 females with a mean age of 49.5±9.7 years ranging from 32 to 67 years. Both the two groups were subjected to myocardial performance evaluation using two-dimensional echocardiography (2DE) and real-time three-dimensional echocardiography (RT-3DE) to examine the left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), longitudinal strain, circumferential strain, area strain, and lateral strain of each left ventricular myocardial segments. Result RT-3DE detected that the trial group had significantly lower values of LVEF, LVEDV and LVESV than those of the control group (P < 0.05). RT-3DE also revealed that the trial group had a significantly weaker longitudinal strain than the control group (P < 0.05). ConclusionRT-3DE is an accurate technology for assessing myocardial motion and function in patients with rheumatic mitral valve disease.
Objective To design a new type of three-dimensional honeycomb guide for percutaneous cannulated screw placement in femoral neck fracture and evaluate its effectiveness. Methods The clinical data of 40 patients with femoral neck fracture who met the selection criteria between June 2019 and December 2020 were retrospectively analyzed. According to different intraoperative positioning methods, they were divided into control group (20 cases, free hand positioning screws) and study group (20 cases, new guide assisted positioning screws). There was no significant difference in gender, age, side, cause of injury, Garden classification, and time from injury to operation between the two groups (P>0.05). The operation time, fluoroscopy times, guide needle puncture times, and fracture healing time of the two groups were recorded. The hip function was evaluated by Harris score at last follow-up. At immediate after operation, the following imaging indexes were used to evaluate the accuracy of screw implantation distribution: screw spacing, screw coverage area, distance from screw to cervical cortex, parallelism between screws, and screw to cervical axial deviation. Results All operations were successfully completed, and the guide needle did not penetrate the femoral neck cortex. There was no significant difference in operation time and fluoroscopy times between the two groups (P>0.05); the guide needle puncture times in the study group was significantly less than that in the control group (t=8.209, P=0.000). Imaging detection at immediate after operation showed that the screw spacing and screw coverage area in the study group were significantly greater than those in the control group (P<0.05); the distance from screw to cervical cortex, parallelism between screws, and screw to cervical axial deviation were significantly smaller than those in the control group (P<0.05). All patients were followed up 7-25 months, with an average of 19.3 months. There was no significant difference in follow-up time between the two groups (t=−0.349, P=0.729). There were 2 cases of fracture nonunion in the control group and 1 case in the study group, and the other fractures completely healed. One case of osteonecrosis of the femoral head occurred in the control group. During the follow-up, there was no complication such as vascular and nerve injury, venous thrombosis, screw penetration, withdrawal, breakage, and refracture, etc. There was no significant difference in fracture healing time and Harris score at last follow-up between the two groups (P>0.05). ConclusionThe new three-dimensional honeycomb guide has the advantages of simple structure and convenient use. It can reduce the puncture times of the guide needle and effectively improve the accuracy distribution of cannulated screw implantation.
In this article, we introduce the principle, describe the utilization and discuss the future development of three-dimensional printing technology for manufacturing artificial organs.