west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "vascular endothelial cell" 24 results
  • Effect of microRNA-22-3p on HMGB1/NLRP3 pathway of human lung microvascular endothelial cells

    Objective To investigate the effect of microRNA-22-3p (miR-22-3p) on the inflammation of human pulmonary microvascular endothelial cells (HPMEC) induced by lipopolysaccharide (LPS) by regulating the HMGB1/NLRP3 pathway. Methods miRNA microarray was taken from peripheral blood of patients with acute respiratory distress syndrome (ARDS) caused by abdominal infection and healthy controls for analysis, and the target miRNA was selected. miRNA mimics, inhibitor and their negative controls were transfected in HPMECs which were stimulated with LPS. Real time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blot were used to detect the mRNA and protein levels of high mobility group box-1 protein (HMGB1) and nucleotide binding oligomerization segment like receptor family 3 (NLRP3). RT-qPCR and enzyme linked immunosorbent assay were used to detect the levels of inflammatory factors in the cells and supernatant. Results miRNA microarray showed that miR-22-3p was down-regulated in the plasma of patients with ARDS. Compared with the negative control group, after miR-22-3p over-expression, the protein and mRNA levels of HMGB1 and NLRP3 decreased significantly. Similarly, the level of cleaved-caspase-1 decreased significantly. At the same time, interleukin (IL)-6, IL-8 and IL-1β mRNA level in cytoplasm and supernatant were down-regulated by miR-22-3p mimics. After transfected with miR-22-3p inhibitor, the expression levels of HMGB1, NLRP3, caspase-1 protein and inflammatory factors were significantly up-regulated. Conclusion miR-22-3p is significantly downregulated in peripheral blood of ARDS patients caused by abdominal infection, which can inhibit the expression of HMGB1 and NLRP3 and its downstream inflammatory response in HPMECs.

    Release date:2023-04-28 02:38 Export PDF Favorites Scan
  • Protective effect of Kaempferol on endothelial cell injury in glucocorticoid induced osteonecrosis of the femoral head

    ObjectiveTo explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro. MethodsBMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 μmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 μmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex. ResultsThe cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 μmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 μmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Conclusion Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.

    Release date:2022-11-02 10:05 Export PDF Favorites Scan
  • Silencing Nodal inhibits the biological behavior of retinal vascular endothelial cells under high glucose conditions

    Objective To observe the effect of Nodal on the biological behavior of retinal vascular endothelial cells (RF/6A cells) in monkeys with high glucose. MethodsRF/6A cells were divided into normal group, mannitol group, high glucose group, high glucose combined with non-specific small interfering RNA treatment group (HG+NC group), high glucose combined with small interfering Nodal treatment group (HG+siNodal group). The transfection efficiency of siNodal was observed by real-time fluorescence quantitative PCR and western blot protein immunoblotting. The effect of Nodal on the proliferation of RF/6A cells was detected by thiazole blue colorimetry. The effect of Nodal on migration ability of RF/6A cells was detected by cell scratch assay. The effect of Nodal on the formation of RF/6A cell lumen was measured by Matrigel three-dimensional in vitro. The expression of extracellular signal phosphorylated regulated kinase 1/2 (pERK1/2) in RF/6A cells was detected by western blot protein immunoblotting. One-way analysis of variance was used to compare groups. ResultsCompared with HG+NC group, Nodal protein (F=33.469) and mRNA relative expression levels (F=38.191) in HG+siNodal group were significantly decreased, cell proliferation was significantly decreased (F=28.548), and cell migration ability was significantly decreased (F=24.182). The number of cell lumen formation was significantly decreased (F=52.643), and the differences were statistically significant (P<0.05). Compared with HG+NC group, the relative expression of pERK1/2 protein in HG+siNodal group was significantly decreased, and the difference was statistically significant (F=44.462, P<0.01). ConclusionsSilencing Nodal expression can inhibit proliferation, migration and tube formation of RF/6A cells induced by high glucose. It may act by inhibiting pERK1/2 expression.

    Release date:2024-03-06 03:23 Export PDF Favorites Scan
  • Heterotopic osteogenesis study of tissue engineered bone by co-culture of vascular endothelial cells and adipose-derived stem cells

    ObjectiveTo investigate the heterotopic osteogenesis of tissue engineered bone using the co-culture system of vascular endothelial cells (VECs) and adipose-derived stem cells (ADSCs) as seed cells.MethodsThe partially deproteinized biological bone (PDPBB) was prepared by fibronectin combined with partially deproteinized bone (PDPB). The ADSCs of 18-week-old Sprague Dawley (SD) rats and VECs of cord blood of full-term pregnant SD rats were isolated and cultured. Three kinds of tissue engineered bone were constructed in vitro: PDPBB+VECs (group A), PDPBB+ADSCs (group B), PDPBB+co-cultured cells (VECs∶ADSCs was 1∶1, group C), and PDPBB was used as control group (group D). Scanning electron microscopy was performed at 10 days after cell transplantation to observe cell adhesion on scaffolds. Forty-eight 18-week-old SD rats were randomly divided into groups A, B, C, and D, with 12 rats in each group. Four kinds of scaffolds, A, B, C, and D, were implanted into the femoral muscle bags of rats in corresponding groups. The animals were killed at 2, 4, 8, and 12 weeks after operation for gross observation, HE staining and Masson staining histological observation, and the amount of bone collagen was measured quantitatively by Masson staining section.ResultsScanning electron microscopy showed that the pores were interconnected in PDPB materials, and a large number of lamellar protein crystals on the surface of PDPBB modified by fibronection were loosely attached to the surface of the scaffold. After 10 days of co-culture PDPBB and cells, a large number of cells attached to PDPBB and piled up with each other to form cell clusters in group C. Polygonal cells and spindle cells were mixed and distributed, and some cells grew along bone trabeculae to form cell layers. Gross observation showed that the granulation tissue began to grow into the material pore at 2 weeks after operation. In group C, a large number of white cartilage-like substances were gradually produced on the surface of the material after 4 weeks, and the surface of the material was uneven. At 12 weeks, the amount of blood vessels on the surface of group A increased, and the material showed consolidation; there was a little white cartilage-like material on the surface of group B, but the pore size of the material did not decrease significantly; in group D, the pore size of the material did not decrease significantly. Histological observation showed that there was no significant difference in the amount of bone collagen between groups at 2 weeks after operation (F=2.551, P=0.088); at 4, 8, and 12 weeks after operation, the amount of bone collagen in group C was significantly higher than that in other 3 groups, and that in group B was higher than that in group D (P<0.05); there was no significant difference between group A and groups B, D (P>0.05).ConclusionThe ability of heterotopic osteogenesis of tissue engineered bone constructed by co-culture VECs and ADSCs was the strongest.

    Release date:2019-09-18 09:49 Export PDF Favorites Scan
  • Effects of icariin on autophagy and exosome production of bone microvascular endothelial cells

    ObjectiveTo evaluate the effects of icariin on autophagy induced by low-concentration of glucocorticoid and exosome production in bone microvascular endothelial cells (BMECs).MethodsBMECs were isolated from femoral heads resected in total hip arthroplasty and then intervened with hydrocortisone of low concentration (0, 0.03, 0.06, 0.10 mg/mL), which were set as groups A, B, C, and D, respectively. On the basis of hydrocortisone intervention, 5×10−5 mol/L of icariin was added to each group (set as groups A1, B1, C1 and D1, respectively). Western blot was used to detect the expressions of microtubule-associated protein 1 light chain 3B (LC3B) and dead bone slice 1 (p62) after 24 hours. Exosomes were extracted from BMECs treated with icariin (intervention group) and without icariin (non-intervention group), and the diameter and concentration of exosomes were evaluated by nanoparticle tracking analysis technique. The total protein content of exosomes was detected by BCA method, and the expressions of proteins carried by exosomes including CD9, CD81, transforming growth factor β1 (TGF-β1), and vascular endothelial growth factor A (VEGFA) were assessed by Western blot. The BMECs were further divided into three groups: BMECs in the experimental group and the control group were co-cultured with exosomes secreted by BMECs treated with or without icariin, respectively; the blank control group was BMECs without exosome intervention. The three groups were treated with hydrocortisone and Western blot was used to detect the expressions of LC3B and p62. The scratching assay was used to detect cell migration ability; angiogenic ability of BMECs was also assessed.ResultsWith the increase of hydrocortisone concentration, the protein expression of LC3B-Ⅱ increased gradually, and the protein expression of p62 decreased gradually (P<0.01). Compared with group with same concentration of hydrocortisone, the protein expression of LC3B-Ⅱ decreased and the protein expression of p62 increased after the administration of icariin (P<0.01). The concentration of exosomes in the intervention group was significantly higher than that in the non-intervention group (t=−10.191, P=0.001); and there was no significant difference in exosome diameter and total protein content between the two groups (P>0.05). CD9 and CD81 proteins were highly expressed in the non-intervention group and the intervention group, and the relative expression ratios of VEGFA/CD9 and TGF-β1/CD9 proteins in the intervention group were significantly higher than those in the non-intervention group (P<0.01). After co-culture of exosomes, the protein expression of p62 increased in blank control group, control group, and experimental group, while the protein expression of LC3B-Ⅱ decreased. There were significant differences among groups (P<0.05). When treated with hydrocortisone for 12 and 24 hours, the scratch closure rate of the control group and experimental group was significantly higher than that of the blank control group (P<0.05), and the scratch closure rate of the experimental group was significantly higher than that of the control group (P<0.05). When treated with hydrocortisone for 4 and 8 hours, the number of lumens, number of sprouting vessels, and length of tubule branches in the experimental group and the control group were significantly greater than those in the blank control group (P<0.05); the length of tubule branches and the number of lumens in the experimental group were significantly greater than those in the control group (P<0.05).ConclusionIcariin and BMECs-derived exosomes can improve the autophagy of BMECs induced by low concentration of glucocorticoid.

    Release date:2019-05-06 04:48 Export PDF Favorites Scan
  • Deferasirox inhibits lipid peroxidation and ferroptosis in human retinal endothelial cells

    Objective To observe and preliminarily explore the effects of Deferasirox (DFX) on lipid peroxidation and ferroptosis in human retinal endothelial cells (HREC). MethodsA cell experimental study. Divided the in vitro cultured HREC into normal glucose (NG) group, high glucose (HG) group, NG+DFX group, HG+DFX group, NG+DFX+ferric ammonium citrate (FAC) group, and HG+DFX+FAC group. Light microscope was used to observe the morphology of the cells; cell proliferation was detected by Cell Counting Kit-8 assay, and Calcein-AM staining was used to detect the unstable iron pool (LIP) content; enzyme-linked immunosorbent assay reader was used to detect the reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG); Western blot was used to detect the relative protein expression of Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11). Two-tailed Student t test was used for comparison between the two groups; one-way ANOVA was used for comparison between multiple groups. ResultsCompared with the HG group and the HG+DFX+FAC group, the cell proliferation rate and the contents of GSH and the relative protein expression of GPX4, and SLC7A11 in the HG+DFX group were significantly increased, and the differences were statistically significant (F=150.70, 21.02, 26.09, 52.62; P<0.001). The contents of LIP, ROS, MDA, and GSSG were significantly decreased, and the differences were statistically significant (F=807.20, 16.94, 31.62, 19.21; P<0.001). ConclusionsHigh glucose significantly induces an increase in LIP, lipid peroxidation, and ferroptosis in HREC. Deferasirox inhibits lipid peroxidation and ferroptosis in HREC by downregulating LIP levels.

    Release date:2024-12-17 05:37 Export PDF Favorites Scan
  • Effect and mechanism of sADAM33 on the proliferation and lumen formation of airway vascular endothelial cells

    ObjectiveTo investigate the effect of ADAM33 gene silencing in VSMCs on the proliferation and lumen formation of airway vascular endothelial cells (VECs) in a co-culture system and the possible regulatory mechanism. MethodsThe Human aortic smooth muscle cells (HASMCs) and human pulmonary microvascular endothelial cells (HPMECs) were used to construct a cell co-culture system. ADAM33 gene expression was silenced by lentivirus transfection technique, and the subjects were divided into endothelial cell blank group, co-culture group, co-culture +shRNA negative control group, and co-culture + ADAM33-SHRNA group. The expressions of sADAM33, VEGFA,VEGER2, ang-1 and ang-2 in co-culture system were detected by ELISA. The proliferation and lumen formation of HPMECs were observed by CCK-8 and Transwell experiments. The protein expression of Tie2, PI3K, Akt, and mTOR key molecules in Tie2/PI3K/Akt/mTOR signaling pathway and the phosphorylation levels of AKT and mTOR were detected by Western-blotting method. Results① Compared with the co-culture group (0.851±0.036) and the co-culture + shRNA negative control group (0.828±0.047), the OD value of the co-culture + ADAM33shRNA group (0.699±0.038) was significantly decreased (P<0.05). ② Compared with the co-culture group (159.169±15.740) and the co-culture +shRNA negative control group (157.357±21.612), the tube length of the co-culture +ADAM33shRNA group (120.812±2.791) was also significantly decreased (P<0.05). ③ After ADAM33 gene expression of HASMCs was silted in co-culture system, the expression levels of VEGFA, VEGFR2, ang-1 and ang-2 were significantly decreased (P<0.05), while the expression levels of Tie2, PI3K, P-Akt and P-mtor were decreased (P<0.05). ConclusionsSilencing the expression of the ADAM33 gene could reduce the release of sADAM33 from the membrane of the airway VSMCs, regulate the proliferation and lumen formation of airway VECs by reducing the expression of VEGF/VEGFR and inhibiting the activities of the Tie2/PI3K/Akt/mTOR signaling pathways,and then participate in airway vascular remodeling in asthma.

    Release date:2024-09-25 03:50 Export PDF Favorites Scan
  • Protective effect of polypyrimidine tract-binding protein-associated splicing factor on endoplasmic reticulum oxidative stress injury of human retinal microvascular endothelial cells

    Objective To observe the effects of overexpression of polypyrimidine tract binding protein-associated splicing factor (PSF) on the endoplasmic reticulum (ER) oxidative stress damage of human retinal microvascular endothelial cells (hRMEC) under high concentration of 4-hydroxynonenal (4-HNE). MethodsThe logarithmic growth phase hRMEC cultured in vitro was divided into normal group, simple 4-HNE treatment group (simple 4-HNE group), empty plasmid combined with 4-HNE treatment group (Vec+4-HNE group), and PSF high expression combined with 4-HNE treatment group (PSF+4-HNE group). In 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group cell culture medium, 10 μmol/L 4-HNE was added and stimulated for 12 hours. Subsequently, the Vec+4-HNE group and PSF+4-HNE group were transfected with transfection reagent liposome 2000 into pcDNA empty bodies and pcDNA-PSF eukaryotic expression plasmids, respectively, for 24 hours. Flow cytometry was used to detect the effects of 4-HNE and PSF on cell apoptosis. The effect of PSF overexpression on the expression of reactive oxygen species (ROS) in hRMEC was detected by 2', 7'-dichlorodihydrofluorescein double Acetate probe. Western blot was used to detect ER oxide protein 1 (Ero-1), protein disulfide isomerase (PDI), C/EBP homologous transcription factor (CHOP), glucose regulatory protein (GRP) 78, protein kinase R-like ER kinase (PERK)/phosphorylated PERK (p-PERK), and Eukaryotic initiation factor (eIF) 2α/the relative expression levels of phosphorylated eIF (peIF) and activated transcription factor 4 (ATF4) proteins in hRMEC of normal group, 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group. Single factor analysis of variance was performed for inter group comparison. ResultsThe apoptosis rates of the simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were (22.50±0.58)%, (26.93±0.55)%, and (11.70±0.17)%, respectively. The intracellular ROS expression levels were 0.23±0.03, 1.60±0.06, and 0.50±0.06, respectively. The difference in cell apoptosis rate among the three groups was statistically significant (F=24.531, P<0.05). The expression level of ROS in the Vec+4-HNE group was significantly higher than that in the simple 4-HNE group and the PSF+4-HNE group, with a statistically significant difference (F=37.274, P<0.05). The relative expression levels of ER Ero-1 and PDI proteins in the normal group, simple 4-HNE group, Vec+4-HNE group, and PSF+4-HNE group were 1.25±0.03, 0.45±0.03, 0.63±0.03, 1.13±0.09, and 1.00±0.10, 0.27±0.10, 0.31±0.05, and 0.80±0.06, respectively. The relative expression levels of CHOP and GRP78 proteins were 0.55±0.06, 1.13±0.09, 0.90±0.06, 0.48±0.04 and 0.48±0.04, 1.25±0.03, 1.03±0.09, 0.50±0.06, respectively. The relative expression levels of Ero-1 (F=43.164), PDI (F=36.643), CHOP (F=42.855), and GRP78 (F=45.275) proteins in four groups were compared, and the differences were statistically significant (P<0.05). Four groups of cells ER p-pERK/pERK (F=35.755), peIF2 α/ The relative expression levels of eIF (F=38.643) and ATF4 (F=31.275) proteins were compared, and the differences were statistically significant (P<0.05). ConclusionPSF can inhibit cell apoptosis and ROS production induced by high concentration of 4-HNE, and its mechanism is closely related to restoring the homeostasis of ER and down-regulating the activation level of PERK/eIF2α/ATF4 pathway.

    Release date:2023-09-12 09:11 Export PDF Favorites Scan
  • Up-regulation of p21 activated kinase 4 expression in the retina of diabetes mice and its effects on the behavior and mitochondrial function in retinal vascular endothelial cells

    ObjectiveTo observe the effects of p21 activated kinase 4 (PAK4) on the mitochondrial function and biological behavior in retinal vascular endothelial cells. MethodsThe experimental study was divided into two parts: in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 12 healthy C57BL/6J male mice were randomly divided into normal control group and diabetes group, with 6 mice in each group. Diabetes mice were induced by streptozotocin to establish diabetes model. Eight weeks after modeling, quantitative real-time polymerase chain reaction and Western blots were performed to detect the expression of PAK4 in diabetic retinas. In vitro cell experiments: the human retinal microvascular endothelial cells (hRMEC) were divided into three groups: conventional cultured cells group (N group), empty vector transfected (Vector group); pcDNA-PAK4 eukaryotic expression plasmid transfected group (PAK4 group). WB and qPCR were used to detect transfection efficiency, while scratching assay, cell scratch test was used to detect cell migration in hRMEC of each group. In vitro white blood cell adhesion experiment combined with 4 ', 6-diamino-2-phenylindole staining was used to detect the number of white blood cells adhering to hRMEC in each group. The Seahorse XFe96 cell energy metabolism analyzer measures intracellular mitochondrial basal respiration, adenosine triphosphate (ATP) production, maximum respiration, and reserve respiration capacity. The t-test was used for comparison between the two groups. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with normal control group, the relative expression levels of PAK4 mRNA and protein in retina of diabetic mice were significantly increased, with statistical significance (t=25.372, 22.419, 25.372; P<0.05). In vitro cell experiment: compared with the N group and Vector group, the PAK4 protein, mRNA relative expression and cell mobility in the hRMEC of PAK4 group were significantly increased, with statistical significance (F=36.821, 38.692, 29.421; P<0.05). Flow cytometry showed that the adhesion number of leukocytes on hRMEC in PAK4 group was significantly increased, and the difference was statistically significant (F=39.649, P<0.01). Mitochondrial pressure measurement results showed that the capacity of mitochondrial basic respiration, ATP production, maximum respiration and reserve respiration in hRMEC in PAK4 group was significantly decreased, with statistical significance (F=27.472, 22.315, 31.147, 27.472; P<0.05). ConclusionOver-expression of PAK4 impairs mitochondrial function and significantly promotes leukocyte adhesion and migration in retinal vascular endothelial cells.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON RABBIT PERIOSTEAL OSTEOBLASTS AND RENAL VASCULAR ENDOTHELIAL CELLS INDIRECT CO-CULTURE IN VITRO

    OBJECTIVE: To determine an optimal co-culture ratio of the rabbit periosteal osteoblasts (RPOB) and rabbit renal vascular endothelial cells(RRVEC) without direct contact for future study of bone tissue engineering. METHODS: RPOB and RRVEC in the ratios of 1:0(control group), 2:1(group 1), 1:1(group 2) and 1:2(group 3) were co-cultured by six well plates and cell inserts. Four days later, the proliferation of RPOB and RRVEC were examined through cell count. Differentiated cell function was assessed by alkaline phosphatase (ALP) activity assay and 3H proline incorporation assay. RESULTS: When RPOB and RRVEC were indirectly co-cultured, the proliferation of RPOB and 3H proline incorporation was higher in group 1 than in the other experimental groups and control group (P lt; 0.05). ALP activity of RPOB was higher in group 1 than in control group and group 3 (P lt; 0.05), but there was no significant difference between group 1 and group 2 (P gt; 0.05). CONCLUSION: These results suggest that RPOB and RRVEC co-cultured in a ratio of 2:1 is optimal for future study of bone tissue engineering.

    Release date:2016-09-01 10:14 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content