west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "wearable" 23 results
  • Research on the awareness and clinical needs of wearable artificial kidney among maintenance hemodialysis patients

    Objective To investigate the awareness and clinical needs of wearable artificial kidney among maintenance hemodialysis (MHD) patients, and to analyze the related influencing factors. Methods MHD patients were recruited from 2 tertiary hospitals in Sichuan province between April and June 2021. The convenient sampling method was used to select patients. The factors influencing the awareness and demand of MHD patients for wearable artificial kidney were analyzed. Results A total of 119 MHD patients were included. The awareness of wearable artificial kidney among the patients was mainly “never heard” (61 cases) and “heard” (58 cases). Most MHD patients (60 cases) were willing to use and participate in clinical trials in the future. The results of logistic regression indicated that the cost on household economy and treatment effect on life quality were the influencing factors for MHD patients’ awareness of wearable artificial kidney (P<0.05). The average duration of single dialysis and the impact of treatment on working or studying were the influencing factors for MHD patients’ needs of wearable artificial kidney (P<0.05). Conclusions The awareness of wearable artificial kidney is low among MHD patients. However, most MHD patients showed great interest in the wearable artificial kidney after preliminary understanding, suggesting that the future clinical application of wearable artificial kidney has great demand.

    Release date:2023-08-24 10:24 Export PDF Favorites Scan
  • Quantitative analysis of breathing patterns based on wearable systems

    Breathing pattern parameters refer to the characteristic pattern parameters of respiratory movements, including the breathing amplitude and cycle, chest and abdomen contribution, coordination, etc. It is of great importance to analyze the breathing pattern parameters quantificationally when exploring the pathophysiological variations of breathing and providing instructions on pulmonary rehabilitation training. Our study provided detailed method to quantify breathing pattern parameters including respiratory rate, inspiratory time, expiratory time, inspiratory time proportion, tidal volume, chest respiratory contribution ratio, thoracoabdominal phase difference and peak inspiratory flow. We also brought in “respiratory signal quality index” to deal with the quality evaluation and quantification analysis of long-term thoracic-abdominal respiratory movement signal recorded, and proposed the way of analyzing the variance of breathing pattern parameters. On this basis, we collected chest and abdomen respiratory movement signals in 23 chronic obstructive pulmonary disease (COPD) patients and 22 normal pulmonary function subjects under spontaneous state in a 15 minute-interval using portable cardio-pulmonary monitoring system. We then quantified subjects’ breathing pattern parameters and variability. The results showed great difference between the COPD patients and the controls in terms of respiratory rate, inspiratory time, expiratory time, thoracoabdominal phase difference and peak inspiratory flow. COPD patients also showed greater variance of breathing pattern parameters than the controls, and unsynchronized thoracic-abdominal movements were even observed among several patients. Therefore, the quantification and analyzing method of breathing pattern parameters based on the portable cardiopulmonary parameters monitoring system might assist the diagnosis and assessment of respiratory system diseases and hopefully provide new parameters and indexes for monitoring the physical status of patients with cardiopulmonary disease.

    Release date:2021-12-24 04:01 Export PDF Favorites Scan
  • Application and development trends of artificial intelligence in rehabilitation after hip and knee arthroplasty

    With the rapid advancement of artificial intelligence (AI), its application in the rehabilitation of patients undergoing hip and knee arthroplasty has been increasingly emphasized. AI has the potential to enhance the precision and individualization of rehabilitation training, improve patient adherence, and optimize overall outcomes. This review summarizes the current progress of AI in postoperative rehabilitation following hip and knee arthroplasty, focusing on its roles in rehabilitation assessment, intelligent training, and remote rehabilitation. Furthermore, the advantages of AI in improving efficiency, accuracy, and patient engagement are highlighted, while existing challenges, including insufficient clinical evidence, high technological costs, and ethical concerns, are critically discussed. Finally, potential future directions, such as the integration of AI with virtual reality and wearable devices, are proposed. This review aims to provide valuable insights for clinical practice and future research in the rehabilitation of hip and knee arthroplasty.

    Release date:2025-09-26 04:04 Export PDF Favorites Scan
  • Portable Epileptic Seizure Monitoring Intelligent System Based on Android System

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2.3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications.

    Release date: Export PDF Favorites Scan
  • A heart rate detection method for wearable electrocardiogram with the presence of motion interference

    The dynamic electrocardiogram (ECG) collected by wearable devices is often corrupted by motion interference due to human activities. The frequency of the interference and the frequency of the ECG signal overlap with each other, which distorts and deforms the ECG signal, and then affects the accuracy of heart rate detection. In this paper, a heart rate detection method that using coarse graining technique was proposed. First, the ECG signal was preprocessed to remove the baseline drift and the high-frequency interference. Second, the motion-related high amplitude interference exceeding the preset threshold was suppressed by signal compression method. Third, the signal was coarse-grained by adaptive peak dilation and waveform reconstruction. Heart rate was calculated based on the frequency spectrum obtained from fast Fourier transformation. The performance of the method was compared with a wavelet transform based QRS feature extraction algorithm using ECG collected from 30 volunteers at rest and in different motion states. The results showed that the correlation coefficient between the calculated heart rate and the standard heart rate was 0.999, which was higher than the result of the wavelet transform method (r = 0.971). The accuracy of the proposed method was significantly higher than the wavelet transform method in all states, including resting (99.95% vs. 99.14%, P < 0.01), walking (100% vs. 97.26%, P < 0.01) and running (100% vs. 90.89%, P < 0.01). The absolute error [0 (0, 1) vs. 1 (0, 1), P < 0.05] and relative error [0 (0, 0.59) vs. 0.52 (0, 0.72), P < 0.05] of the proposed method were significantly lower than the wavelet transform method during running state. The method presented in this paper shows high accuracy and strong anti-interference ability, and is potentially used in wearable devices to realize real-time continuous heart rate monitoring in daily activities and exercise conditions.

    Release date:2021-10-22 02:07 Export PDF Favorites Scan
  • Application and research of smart wearable devices for heart and brain diseases related to high altitude

    Smart wearable devices play an increasingly important role in physiological monitoring and disease prevention because they are portable, real-time, dynamic and continuous.The popularization of smart wearable devices among people under high-altitude environment would be beneficial for the prevention for heart and brain diseases related to high altitude. The current review comprehensively elucidates the effects of high-altitude environment on the heart and brain of different population and experimental subjects, the characteristics and applications of different types of wearable devices, and the limitations and challenges for their application. By emphasizing their application values, this review provides practical reference information for the prevention of high-altitude disease and the protection of life and health.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Application status and future trend analysis of wearable devices in the field of clinical nursing

    Wearable devices, as an important component of digital health, are gradually penetrating into the clinical nursing field. This paper explores the current applications of wearable devices in the field of clinical nursing, with a focus on their significant roles in real-time monitoring of physiological parameters, disease management, functional rehabilitation exercises. Additionally, it analyzes the challenges these devices face, such as the need for standardized development, data security and privacy protection, and cost-benefit analysis. This paper also proposes measures to address these challenges, including enhancing policy formulation, promoting standardization, and fostering technological innovation, with the aim of providing valuable insights for the advancement of high-quality clinical nursing practices.

    Release date:2024-11-27 02:31 Export PDF Favorites Scan
  • A Maternal Health Care System Based on Mobile Health Care

    Wearable devices are used in the new design of the maternal health care system to detect electrocardiogram and oxygen saturation signal while smart terminals are used to achieve assessments and input maternal clinical information. All the results combined with biochemical analysis from hospital are uploaded to cloud server by mobile Internet. Machine learning algorithms are used for data mining of all information of subjects. This system can achieve the assessment and care of maternal physical health as well as mental health. Moreover, the system can send the results and health guidance to smart terminals.

    Release date: Export PDF Favorites Scan
  • Research on Detection Method with Wearable Respiration Device Based on the Theory of Bio-impedance

    Considering the importance of the human respiratory signal detection and based on the Cole-Cole bio-impedance model, we developed a wearable device for detecting human respiratory signal. The device can be used to analyze the impedance characteristics of human body at different frequencies based on the bio-impedance theory. The device is also based on the method of proportion measurement to design a high signal to noise ratio (SNR) circuit to get human respiratory signal. In order to obtain the waveform of the respiratory signal and the value of the respiration rate, we used the techniques of discrete Fourier transform (DFT) and dynamic difference threshold peak detection. Experiments showed that this system was valid, and we could see that it could accurately detect the waveform of respiration and the detection accuracy rate of respiratory wave peak point detection results was over 98%. So it can meet the needs of the actual breath test.

    Release date:2016-12-19 11:20 Export PDF Favorites Scan
  • Study on the quality evaluation of electrocardiogram signal in wearable physiological monitoring system

    As a novel technology, wearable physiological parameter monitoring technology represents the future of monitoring technology. However, there are still many problems in the application of this kind of technology. In this paper, a pilot study was conducted to evaluate the quality of electrocardiogram (ECG) signals of the wearable physiological monitoring system (SensEcho-5B). Firstly, an evaluation algorithm of ECG signal quality was developed based on template matching method, which was used for automatic and quantitative evaluation of ECG signals. The algorithm performance was tested on a randomly selected 100 h dataset of ECG signals from 100 subjects (15 healthy subjects and 85 patients with cardiovascular diseases). On this basis, 24-hour ECG data of 30 subjects (7 healthy subjects and 23 patients with cardiovascular diseases) were collected synchronously by SensEcho-5B and ECG Holter. The evaluation algorithm was used to evaluate the quality of ECG signals recorded synchronously by the two systems. Algorithm validation results: sensitivity was 100%, specificity was 99.51%, and accuracy was 99.99%. Results of controlled test of 30 subjects: the median (Q1, Q3) of ECG signal detected by SensEcho-5B with poor signal quality time was 8.93 (0.84, 32.53) minutes, and the median (Q1, Q3) of ECG signal detected by Holter with poor signal quality time was 14.75 (4.39, 35.98) minutes (Rank sum test, P=0.133). The results show that the ECG signal quality algorithm proposed in this paper can effectively evaluate the ECG signal quality of the wearable physiological monitoring system. Compared with signal measured by Holter, the ECG signal measured by SensEcho-5B has the same ECG signal quality. Follow-up studies will further collect physiological data of large samples in real clinical environment, analyze and evaluate the quality of ECG signals, so as to continuously optimize the performance of the monitoring system.

    Release date:2021-04-21 04:23 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content