Autoimmune ocular diseases are a type of inflammatory eye condition characterized by the involvement of the immune response. This includes various types disease such as autoimmune uveitis, thyroid-associated eye disease, and primary Sjögren's syndrome. In recent years, breakthroughs have been achieved in inducing transplant tolerance, understanding tumor immune evasion, and preventing autoimmune diseases using immune checkpoint molecules. Negative immune checkpoints effectively control disease progression by inhibiting T cell proliferation, reducing inflammatory cytokine levels, and ultimately regulating autoimmune balance. Therefore, the negative immune checkpoint molecules are expected to be used as a new therapeutic target in the future, and the combination therapy through the combination of negative immune checkpoint drugs is expected to become an important direction to improve the efficacy of the treatment of autoimmune diseases.
Citation: Feng Hui, Wang Hong. Current research status of negative immune checkpoint factors in autoimmune eye diseases. Chinese Journal of Ocular Fundus Diseases, 2024, 40(5): 402-408. doi: 10.3760/cma.j.cn511434-20230918-00389 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Zou W, Wu Z, Xiang X, et al. The expression and significance of T helper cell subsets and regulatory T cells CD(4)(+) CD(2)(5)(+) in peripheral blood of patients with human leukocyte antigen B27-positive acute anterior uveitis[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(4): 665-672. DOI: 10.1007/s00417-014-2567-9. |
2. | Zhu Y, Yu Q, Su G, et al. Interferon-alpha2a induces CD4(+) T cell apoptosis and suppresses Th1/Th17 responses via upregulating IRF1-mediated PDL1 expression in dendritic cells from Behcet's uveitis[J/OL]. Clin Immunol, 2023, 250: 109303[2023-04-29]. https://pubmed.ncbi.nlm.nih.gov/36997038/. DOI: 10.1016/j.clim.2023.109303. |
3. | Sharpe AH. Mechanisms of costimulation[J]. Immunol Rev, 2009, 229(1): 5-11. DOI: 10.1111/j.1600-065X.2009.00784.x. |
4. | Gilman SC, Noelle RJ. Molecular mechanisms of costimulation[J]. Agents Actions Suppl, 1998, 49: 15-16. DOI: 10.1007/978-3-0348-8857-8_3. |
5. | Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nat Rev Immunol, 2013, 13(4): 227-242. DOI: 10.1038/nri3405. |
6. | Chen Y, Guan SY, Deng J, et al. B7-H3: a promising therapeutic target for autoimmune diseases[J/OL]. Cell Immunol, 2020, 352: 104077[2020-02-21]. https://pubmed.ncbi.nlm.nih.gov/32113615/. DOI: 10.1016/j.cellimm.2020.104077. |
7. | Wang JY, Wang WP. B7-H4, a promising target for immunotherapy[J/OL]. Cell Immunol, 2020, 347: 104008[2019-11-04]. https://pubmed.ncbi.nlm.nih.gov/31733822/. DOI: 10.1016/j.cellimm.2019.104008. |
8. | ElTanbouly MA, Zhao Y, Nowak E, et al. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance[J/OL]. Science, 2020, 367(6475): eaay0524[2020-01-17]. https://pubmed.ncbi.nlm.nih.gov/31949051/. DOI: 10.1126/science.aay0524. |
9. | Antonioli L, Pacher P, Vizi ES, et al. CD39 and CD73 in immunity and inflammation[J]. Trends Mol Med, 2013, 19(6): 355-367. DOI: 10.1016/j.molmed.2013.03.005. |
10. | Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function[J]. Annu Rev Immunol, 2006, 24: 65-97. DOI: 10.1146/annurev.immunol.24.021605.090535. |
11. | Pack CD, Bommireddy R, Munoz LE, et al. Tumor membrane-based vaccine immunotherapy in combination with anti-CTLA-4 antibody confers protection against immune checkpoint resistant murine triple-negative breast cancer[J]. Hum Vaccin Immunother, 2020, 16(12): 3184-3193. DOI: 10.1080/21645515.2020.1754691. |
12. | Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells[J]. Cancer Res, 2004, 64(3): 1140-1145. DOI: 10.1158/0008-5472.can-03-3259. |
13. | Nikoo M, Rabiee F, Mohebbi H, et al. Nivolumab plus Ipilimumab combination therapy in cancer: current evidence to date[J/OL]. Int Immunopharmacol, 2023, 117: 109881[2023-04-02]. https://pubmed.ncbi.nlm.nih.gov/37012882/. DOI: 10.1016/j.intimp.2023.109881. |
14. | Klocke K, Holmdahl R, Wing K. CTLA-4 expressed by FOXP3(+) regulatory T cells prevents inflammatory tissue attack and not T-cell priming in arthritis[J]. Immunology, 2017, 152(1): 125-137. DOI: 10.1111/imm.12754. |
15. | Kubo S, Nakano K, Nakayamada S, et al. Clinical, radiographic and functional efficacy of abatacept in routine care for rheumatoid arthritis patients: Abatacept Leading Trial for RA on Imaging Remission (ALTAIR) study[J]. Clin Exp Rheumatol, 2016, 34(5): 834-841. |
16. | Lee HJ, Li CW, Hammerstad SS, et al. Immunogenetics of autoimmune thyroid diseases: a comprehensive review[J]. J Autoimmun, 2015, 64: 82-90. DOI: 10.1016/j.jaut.2015.07.009. |
17. | Chen X, Hu Z, Liu M, et al. Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves' disease in a Chinese Han population[J]. BMC Med Genet, 2018, 19(1): 171. DOI: 10.1186/s12881-018-0665-y. |
18. | Si X, Zhang X, Tang W, et al. Association between the CTLA-4 +49A/G polymorphism and Graves' disease: a meta-analysis[J]. Exp Ther Med, 2012, 4(3): 538-544. DOI: 10.3892/etm.2012.618. |
19. | Chen YH, Lightman S, Calder VL. CD4(+) T-Cell plasticity in non-infectious retinal inflammatory disease[J/OL]. Int J Mol Sci, 2021, 22(17): 9584[2021-09-03]. https://pubmed.ncbi.nlm.nih.gov/34502490/. DOI: 10.3390/ijms22179584. |
20. | Du L, Yang P, Hou S, et al. Association of the CTLA-4 gene with Vogt-Koyanagi-Harada syndrome[J]. Clin Immunol, 2008, 127(1): 43-48. DOI: 10.1016/j.clim.2008.01.004. |
21. | Zhang J, Zhou P, Hu S, et al. Meta-analysis of the genetic association between PTPN22 and CTLA-4 variants and risk of uveitis[J]. Ophthalmic Res, 2022, 65(3): 264-275. DOI: 10.1159/000521301. |
22. | Wang S, Shen H, Bai B, et al. Increased CD4(+)CD8(+) double-positive T cell in patients with primary Sjogren's syndrome correlated with disease activity[J/OL]. J Immunol Res, 2021, 2021: 6658324[2021-05-04]. https://pubmed.ncbi.nlm.nih.gov/34095321/. DOI: 10.1155/2021/6658324. |
23. | Hadj Kacem H, Kaddour N, Adyel FZ, et al. HLA-DQB1 CAR1/CAR2, TNFa IR2/IR4 and CTLA-4 polymorphisms in Tunisian patients with rheumatoid arthritis and Sjogren's syndrome[J]. Rheumatology (Oxford), 2001, 40(12): 1370-1374. DOI: 10.1093/rheumatology/40.12.1370. |
24. | Gottenberg JE, Loiseau P, Azarian M, et al. CTLA-4 +49A/G and CT60 gene polymorphisms in primary Sjogren syndrome[J]. Arthritis Res Ther, 2007, 9(2): 24. DOI: 10.1186/ar2136. |
25. | Verwaerde C, Naud MC, Delanoye A, et al. Ocular transfer of retinal glial cells transduced ex vivo with adenovirus expressing viral IL-10 or CTLA4-Ig inhibits experimental autoimmune uveoretinitis[J]. Gene Ther, 2003, 10(23): 1970-1981. DOI: 10.1038/sj.gt.3302101. |
26. | Goldzweig O, Hashkes PJ. Abatacept in the treatment of polyarticular JIA: development, clinical utility, and place in therapy[J]. Drug Des Devel Ther, 2011, 5: 61-70. DOI: 10.2147/DDDT.S16489. |
27. | Riley JL. PD-1 signaling in primary T cells[J]. Immunol Rev, 2009, 229(1): 114-125. DOI: 10.1111/j.1600-065X.2009.00767.x. |
28. | Chen J, Jiang CC, Jin L, et al. Regulation of PD-L1: a novel role of pro-survival signalling in cancer[J]. Ann Oncol, 2016, 27(3): 409-416. DOI: 10.1093/annonc/mdv615. |
29. | Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. DOI: 10.1016/j.immuni.2018.03.014. |
30. | Wang Y, Du J, Gao Z, et al. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy[J]. Br J Cancer, 2023, 128(7): 1196-1207. DOI: 10.1038/s41416-022-02084-y. |
31. | Pawelczyk K, Piotrowska A, Ciesielska U, et al. Role of PD-L1 expression in non-small cell lung cancer and their prognostic significance according to clinicopathological factors and diagnostic markers[J]. Int J Mol Sci, 2019, 20(4): 824. DOI: 10.3390/ijms20040824. |
32. | Teixidó C, Vilariño N, Reyes R, et al. PD-L1 expression testing in non-small cell lung cancer[J/OL]. Ther Adv Med Oncol, 2018, 10: 1758835918763493[2018-04-11]. https://pubmed.ncbi.nlm.nih.gov/29662547/. DOI: 10.1177/1758835918763493. |
33. | Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1[J]. Immunity, 2004, 20(3): 337-347. DOI: 10.1016/s1074-7613(04)00051-2. |
34. | 夏晓玲, 汤玮, 孙亮亮, 等. 甲状腺相关性眼病患者外周血CD4+、CD8+T细胞百分比及细胞表面程序性死亡蛋白1表达的改变及其意义[J]. 第二军医大学学报, 2016, 37(6): 704-710. DOI: 10.16781/j.0258-879x.2016.06.0704.Xia XL, Tang W, Sun LL, et al. Changes of CD4+, CD8+T cell percentage and expression of programmed cell surface death protein 1 in peripheral blood of patients with thyroid-associated eye disease and its significance[J]. Academic Journal of Naval Medical University, 2016, 37(6): 704-710. DOI: 10.16781/j.0258-879x.2016.06.0704. |
35. | Sagiv O, Kandl TJ, Thakar SD, et al. Extraocular muscle enlargement and thyroid eye disease-like orbital inflammation associated with immune checkpoint inhibitor therapy in cancer patients[J]. Ophthalmic Plast Reconstr Surg, 2019, 35(1): 50-52. DOI: 10.1097/IOP.0000000000001161. |
36. | Kobayashi M, Kawano S, Hatachi S, et al. Enhanced expression of programmed death-1 (PD-1)/PD-L1 in salivary glands of patients with Sjogren's syndrome[J]. J Rheumatol, 2005, 32(11): 2156-2163. |
37. | 杨月, 侯佳奇, 李国陵, 等. PD-1及其配体在原发性干燥综合征患者唇腺中的表达及临床意义[J]. 临床与病理杂志, 2017, 37(3): 456-461. DOI: 10.3978/j.issn.2095-6959.2017.03.002.Yang Y, Hou JQ, Li GL, et al. Expression and clinical significance of PD-1 and its ligands in salivary glands of patients with Sjogren's syndrome[J]. J Clin Pathol Res, 2017, 37(3): 456-461. DOI: 10.3978/j.issn.2095-6959.2017.03.002. |
38. | Chen J, Qian H, Horai R, et al. Mouse models of experimental autoimmune uveitis: comparative analysis of adjuvant-induced vs spontaneous models of uveitis[J]. Curr Mol Med, 2015, 15(6): 550-557. DOI: 10.2174/1566524015666150731100318. |
39. | Chapoval AI, Ni J, Lau JS, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production[J]. Nat Immunol, 2001, 2(3): 269-274. DOI: 10.1038/85339. |
40. | Sun J, Fu F, Gu W, et al. Origination of new immunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system[J/OL]. PLoS One, 2011, 6(9): e24751[2011-09-13]. https://pubmed.ncbi.nlm.nih.gov/21931843/. DOI: 10.1371/journal.pone.0024751. |
41. | Luo L, Chapoval AI, Flies DB, et al. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells[J]. J Immunol, 2004, 173(9): 5445-5450. DOI: 10.4049/jimmunol.173.9.5445. |
42. | Prasad DV, Nguyen T, Li Z, et al. Murine B7-H3 is a negative regulator of T cells[J]. J Immunol, 2004, 173(4): 2500-2506. DOI: 10.4049/jimmunol.173.4.2500. |
43. | Suh WK, Gajewska BU, Okada H, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses[J]. Nat Immunol, 2003, 4(9): 899-906. DOI: 10.1038/ni967. |
44. | Ozaki H, Inoue N, Iwatani Y, et al. Association of B7H3 and B7H4 gene polymorphisms and protein expression with the development and prognosis of autoimmune thyroid diseases[J]. Clin Endocrinol (Oxf), 2023, 99(1): 103-112. DOI: 10.1111/cen.14923. |
45. | Zhao B, Huang Z, Zhu X, et al. Clinical significance of the expression of co-stimulatory molecule B7-H3 in papillary thyroid carcinoma[J/OL]. Front Cell Dev Biol, 2022, 10: 819236[2022-04-12]. https://pubmed.ncbi.nlm.nih.gov/35493085/. DOI: 10.3389/fcell.2022.819236. |
46. | Li P, Yang Y, Jin Y, et al. B7-H3 participates in human salivary gland epithelial cells apoptosis through NF-kappaB pathway in primary Sjogren's syndrome[J]. J Transl Med, 2019, 17(1): 268. DOI: 10.1186/s12967-019-2017-x. |
47. | Sica GL, Choi IH, Zhu G, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity, 2003, 18(6): 849-861. DOI: 10.1016/s1074-7613(03)00152-3. |
48. | Cheung SS, Ou D, Metzger DL, et al. B7-H4 expression in normal and diseased human islet beta cells[J]. Pancreas, 2014, 43(1): 128-134. DOI: 10.1097/MPA.0b013e31829695d2. |
49. | Wang X, Wang T, Xu M, et al. B7-H4 overexpression impairs the immune response of T cells in human cervical carcinomas[J]. Hum Immunol, 2014, 75(12): 1203-1209. DOI: 10.1016/j.humimm.2014.10.002. |
50. | Pawar RD, Goilav B, Xia Y, et al. B7x/B7-H4 modulates the adaptive immune response and ameliorates renal injury in antibody-mediated nephritis[J]. Clin Exp Immunol, 2015, 179(2): 329-343. DOI: 10.1111/cei.12452. |
51. | Abadi YM, Jeon H, Ohaegbulam KC, et al. Host b7x promotes pulmonary metastasis of breast cancer[J]. J Immunol, 2013, 190(7): 3806-3814. DOI: 10.4049/jimmunol.1202439. |
52. | Qian Y, Sang Y, Wang FX, et al. Prognostic significance of B7-H4 expression in matched primary pancreatic cancer and liver metastases[J]. Oncotarget, 2016, 7(44): 72242-72249. DOI: 10.18632/oncotarget.12665. |
53. | Han S, Li Y, Zhang J, et al. Roles of immune inhibitory molecule B7-H4 in cervical cancer[J]. Oncol Rep, 2017, 37(4): 2308-2316. DOI: 10.3892/or.2017.5481. |
54. | 俞大亮, 厉小梅, 王喜梅, 等. 共刺激分子B7-H4在原发性干燥综合征患者唇腺组织和血清中的表达及意义[J]. 中华医学杂志, 2012, 92(39): 2775-2777. DOI: 10.3760/cma.j.issn.0376-2491.2012.39.011.Yu DL, Li XM, Wang XM, et al. B7-H4 expression of salivary gland and sera in patients with primary Sjogren's syndrome[J]. Natl Med J China, 2012, 92(39): 2775-2777. DOI: 10.3760/cma.j.issn.0376-2491.2012.39.011. |
55. | Zheng X, Wang Q, Yuan X, et al. B7-H4 inhibits the development of primary Sjogren's syndrome by regulating treg differentiation in NOD/Ltj mice[J/OL]. J Immunol Res, 2020, 2020: 4896727[2020-09-27]. https://pubmed.ncbi.nlm.nih.gov/33062721/. DOI: 10.1155/2020/4896727. |
56. | Huang X, Zhang X, Li E, et al. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy[J]. J Hematol Oncol, 2020, 13(1): 83. DOI: 10.1186/s13045-020-00917-y. |
57. | Wang L, Le Mercier I, Putra J, et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity[J]. Proc Natl Acad Sci USA, 2014, 111(41): 14846-14851. DOI: 10.1073/pnas.1407447111. |
58. | Wang G, Tai R, Wu Y, et al. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers[J]. Cytokine Growth Factor Rev, 2020, 52: 1-14. DOI: 10.1016/j.cytogfr.2020.02.002. |
59. | Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator[J]. Nat Immunol, 2005, 6(1): 90-98. DOI: 10.1038/ni1144. |
60. | Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator[J]. Proc Natl Acad Sci USA, 2005, 102(4): 1116-1121. DOI: 10.1073/pnas.0409071102. |
61. | Cheung TC, Oborne LM, Steinberg MW, et al. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment[J]. J Immunol, 2009, 183(11): 7286-7296. DOI: 10.4049/jimmunol.0902490. |
62. | Ye Z, Deng B, Wang C, et al. Decreased B and T lymphocyte attenuator in Behcet's disease may trigger abnormal Th17 and Th1 immune responses[J/OL]. Sci Rep, 2016, 6: 20401[2016-02-04]. https://pubmed.ncbi.nlm.nih.gov/26841832/. DOI: 10.1038/srep20401. |
- 1. Zou W, Wu Z, Xiang X, et al. The expression and significance of T helper cell subsets and regulatory T cells CD(4)(+) CD(2)(5)(+) in peripheral blood of patients with human leukocyte antigen B27-positive acute anterior uveitis[J]. Graefe's Arch Clin Exp Ophthalmol, 2014, 252(4): 665-672. DOI: 10.1007/s00417-014-2567-9.
- 2. Zhu Y, Yu Q, Su G, et al. Interferon-alpha2a induces CD4(+) T cell apoptosis and suppresses Th1/Th17 responses via upregulating IRF1-mediated PDL1 expression in dendritic cells from Behcet's uveitis[J/OL]. Clin Immunol, 2023, 250: 109303[2023-04-29]. https://pubmed.ncbi.nlm.nih.gov/36997038/. DOI: 10.1016/j.clim.2023.109303.
- 3. Sharpe AH. Mechanisms of costimulation[J]. Immunol Rev, 2009, 229(1): 5-11. DOI: 10.1111/j.1600-065X.2009.00784.x.
- 4. Gilman SC, Noelle RJ. Molecular mechanisms of costimulation[J]. Agents Actions Suppl, 1998, 49: 15-16. DOI: 10.1007/978-3-0348-8857-8_3.
- 5. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nat Rev Immunol, 2013, 13(4): 227-242. DOI: 10.1038/nri3405.
- 6. Chen Y, Guan SY, Deng J, et al. B7-H3: a promising therapeutic target for autoimmune diseases[J/OL]. Cell Immunol, 2020, 352: 104077[2020-02-21]. https://pubmed.ncbi.nlm.nih.gov/32113615/. DOI: 10.1016/j.cellimm.2020.104077.
- 7. Wang JY, Wang WP. B7-H4, a promising target for immunotherapy[J/OL]. Cell Immunol, 2020, 347: 104008[2019-11-04]. https://pubmed.ncbi.nlm.nih.gov/31733822/. DOI: 10.1016/j.cellimm.2019.104008.
- 8. ElTanbouly MA, Zhao Y, Nowak E, et al. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance[J/OL]. Science, 2020, 367(6475): eaay0524[2020-01-17]. https://pubmed.ncbi.nlm.nih.gov/31949051/. DOI: 10.1126/science.aay0524.
- 9. Antonioli L, Pacher P, Vizi ES, et al. CD39 and CD73 in immunity and inflammation[J]. Trends Mol Med, 2013, 19(6): 355-367. DOI: 10.1016/j.molmed.2013.03.005.
- 10. Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function[J]. Annu Rev Immunol, 2006, 24: 65-97. DOI: 10.1146/annurev.immunol.24.021605.090535.
- 11. Pack CD, Bommireddy R, Munoz LE, et al. Tumor membrane-based vaccine immunotherapy in combination with anti-CTLA-4 antibody confers protection against immune checkpoint resistant murine triple-negative breast cancer[J]. Hum Vaccin Immunother, 2020, 16(12): 3184-3193. DOI: 10.1080/21645515.2020.1754691.
- 12. Blank C, Brown I, Peterson AC, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells[J]. Cancer Res, 2004, 64(3): 1140-1145. DOI: 10.1158/0008-5472.can-03-3259.
- 13. Nikoo M, Rabiee F, Mohebbi H, et al. Nivolumab plus Ipilimumab combination therapy in cancer: current evidence to date[J/OL]. Int Immunopharmacol, 2023, 117: 109881[2023-04-02]. https://pubmed.ncbi.nlm.nih.gov/37012882/. DOI: 10.1016/j.intimp.2023.109881.
- 14. Klocke K, Holmdahl R, Wing K. CTLA-4 expressed by FOXP3(+) regulatory T cells prevents inflammatory tissue attack and not T-cell priming in arthritis[J]. Immunology, 2017, 152(1): 125-137. DOI: 10.1111/imm.12754.
- 15. Kubo S, Nakano K, Nakayamada S, et al. Clinical, radiographic and functional efficacy of abatacept in routine care for rheumatoid arthritis patients: Abatacept Leading Trial for RA on Imaging Remission (ALTAIR) study[J]. Clin Exp Rheumatol, 2016, 34(5): 834-841.
- 16. Lee HJ, Li CW, Hammerstad SS, et al. Immunogenetics of autoimmune thyroid diseases: a comprehensive review[J]. J Autoimmun, 2015, 64: 82-90. DOI: 10.1016/j.jaut.2015.07.009.
- 17. Chen X, Hu Z, Liu M, et al. Correlation between CTLA-4 and CD40 gene polymorphisms and their interaction in graves' disease in a Chinese Han population[J]. BMC Med Genet, 2018, 19(1): 171. DOI: 10.1186/s12881-018-0665-y.
- 18. Si X, Zhang X, Tang W, et al. Association between the CTLA-4 +49A/G polymorphism and Graves' disease: a meta-analysis[J]. Exp Ther Med, 2012, 4(3): 538-544. DOI: 10.3892/etm.2012.618.
- 19. Chen YH, Lightman S, Calder VL. CD4(+) T-Cell plasticity in non-infectious retinal inflammatory disease[J/OL]. Int J Mol Sci, 2021, 22(17): 9584[2021-09-03]. https://pubmed.ncbi.nlm.nih.gov/34502490/. DOI: 10.3390/ijms22179584.
- 20. Du L, Yang P, Hou S, et al. Association of the CTLA-4 gene with Vogt-Koyanagi-Harada syndrome[J]. Clin Immunol, 2008, 127(1): 43-48. DOI: 10.1016/j.clim.2008.01.004.
- 21. Zhang J, Zhou P, Hu S, et al. Meta-analysis of the genetic association between PTPN22 and CTLA-4 variants and risk of uveitis[J]. Ophthalmic Res, 2022, 65(3): 264-275. DOI: 10.1159/000521301.
- 22. Wang S, Shen H, Bai B, et al. Increased CD4(+)CD8(+) double-positive T cell in patients with primary Sjogren's syndrome correlated with disease activity[J/OL]. J Immunol Res, 2021, 2021: 6658324[2021-05-04]. https://pubmed.ncbi.nlm.nih.gov/34095321/. DOI: 10.1155/2021/6658324.
- 23. Hadj Kacem H, Kaddour N, Adyel FZ, et al. HLA-DQB1 CAR1/CAR2, TNFa IR2/IR4 and CTLA-4 polymorphisms in Tunisian patients with rheumatoid arthritis and Sjogren's syndrome[J]. Rheumatology (Oxford), 2001, 40(12): 1370-1374. DOI: 10.1093/rheumatology/40.12.1370.
- 24. Gottenberg JE, Loiseau P, Azarian M, et al. CTLA-4 +49A/G and CT60 gene polymorphisms in primary Sjogren syndrome[J]. Arthritis Res Ther, 2007, 9(2): 24. DOI: 10.1186/ar2136.
- 25. Verwaerde C, Naud MC, Delanoye A, et al. Ocular transfer of retinal glial cells transduced ex vivo with adenovirus expressing viral IL-10 or CTLA4-Ig inhibits experimental autoimmune uveoretinitis[J]. Gene Ther, 2003, 10(23): 1970-1981. DOI: 10.1038/sj.gt.3302101.
- 26. Goldzweig O, Hashkes PJ. Abatacept in the treatment of polyarticular JIA: development, clinical utility, and place in therapy[J]. Drug Des Devel Ther, 2011, 5: 61-70. DOI: 10.2147/DDDT.S16489.
- 27. Riley JL. PD-1 signaling in primary T cells[J]. Immunol Rev, 2009, 229(1): 114-125. DOI: 10.1111/j.1600-065X.2009.00767.x.
- 28. Chen J, Jiang CC, Jin L, et al. Regulation of PD-L1: a novel role of pro-survival signalling in cancer[J]. Ann Oncol, 2016, 27(3): 409-416. DOI: 10.1093/annonc/mdv615.
- 29. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48(3): 434-452. DOI: 10.1016/j.immuni.2018.03.014.
- 30. Wang Y, Du J, Gao Z, et al. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy[J]. Br J Cancer, 2023, 128(7): 1196-1207. DOI: 10.1038/s41416-022-02084-y.
- 31. Pawelczyk K, Piotrowska A, Ciesielska U, et al. Role of PD-L1 expression in non-small cell lung cancer and their prognostic significance according to clinicopathological factors and diagnostic markers[J]. Int J Mol Sci, 2019, 20(4): 824. DOI: 10.3390/ijms20040824.
- 32. Teixidó C, Vilariño N, Reyes R, et al. PD-L1 expression testing in non-small cell lung cancer[J/OL]. Ther Adv Med Oncol, 2018, 10: 1758835918763493[2018-04-11]. https://pubmed.ncbi.nlm.nih.gov/29662547/. DOI: 10.1177/1758835918763493.
- 33. Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1[J]. Immunity, 2004, 20(3): 337-347. DOI: 10.1016/s1074-7613(04)00051-2.
- 34. 夏晓玲, 汤玮, 孙亮亮, 等. 甲状腺相关性眼病患者外周血CD4+、CD8+T细胞百分比及细胞表面程序性死亡蛋白1表达的改变及其意义[J]. 第二军医大学学报, 2016, 37(6): 704-710. DOI: 10.16781/j.0258-879x.2016.06.0704.Xia XL, Tang W, Sun LL, et al. Changes of CD4+, CD8+T cell percentage and expression of programmed cell surface death protein 1 in peripheral blood of patients with thyroid-associated eye disease and its significance[J]. Academic Journal of Naval Medical University, 2016, 37(6): 704-710. DOI: 10.16781/j.0258-879x.2016.06.0704.
- 35. Sagiv O, Kandl TJ, Thakar SD, et al. Extraocular muscle enlargement and thyroid eye disease-like orbital inflammation associated with immune checkpoint inhibitor therapy in cancer patients[J]. Ophthalmic Plast Reconstr Surg, 2019, 35(1): 50-52. DOI: 10.1097/IOP.0000000000001161.
- 36. Kobayashi M, Kawano S, Hatachi S, et al. Enhanced expression of programmed death-1 (PD-1)/PD-L1 in salivary glands of patients with Sjogren's syndrome[J]. J Rheumatol, 2005, 32(11): 2156-2163.
- 37. 杨月, 侯佳奇, 李国陵, 等. PD-1及其配体在原发性干燥综合征患者唇腺中的表达及临床意义[J]. 临床与病理杂志, 2017, 37(3): 456-461. DOI: 10.3978/j.issn.2095-6959.2017.03.002.Yang Y, Hou JQ, Li GL, et al. Expression and clinical significance of PD-1 and its ligands in salivary glands of patients with Sjogren's syndrome[J]. J Clin Pathol Res, 2017, 37(3): 456-461. DOI: 10.3978/j.issn.2095-6959.2017.03.002.
- 38. Chen J, Qian H, Horai R, et al. Mouse models of experimental autoimmune uveitis: comparative analysis of adjuvant-induced vs spontaneous models of uveitis[J]. Curr Mol Med, 2015, 15(6): 550-557. DOI: 10.2174/1566524015666150731100318.
- 39. Chapoval AI, Ni J, Lau JS, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production[J]. Nat Immunol, 2001, 2(3): 269-274. DOI: 10.1038/85339.
- 40. Sun J, Fu F, Gu W, et al. Origination of new immunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system[J/OL]. PLoS One, 2011, 6(9): e24751[2011-09-13]. https://pubmed.ncbi.nlm.nih.gov/21931843/. DOI: 10.1371/journal.pone.0024751.
- 41. Luo L, Chapoval AI, Flies DB, et al. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells[J]. J Immunol, 2004, 173(9): 5445-5450. DOI: 10.4049/jimmunol.173.9.5445.
- 42. Prasad DV, Nguyen T, Li Z, et al. Murine B7-H3 is a negative regulator of T cells[J]. J Immunol, 2004, 173(4): 2500-2506. DOI: 10.4049/jimmunol.173.4.2500.
- 43. Suh WK, Gajewska BU, Okada H, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses[J]. Nat Immunol, 2003, 4(9): 899-906. DOI: 10.1038/ni967.
- 44. Ozaki H, Inoue N, Iwatani Y, et al. Association of B7H3 and B7H4 gene polymorphisms and protein expression with the development and prognosis of autoimmune thyroid diseases[J]. Clin Endocrinol (Oxf), 2023, 99(1): 103-112. DOI: 10.1111/cen.14923.
- 45. Zhao B, Huang Z, Zhu X, et al. Clinical significance of the expression of co-stimulatory molecule B7-H3 in papillary thyroid carcinoma[J/OL]. Front Cell Dev Biol, 2022, 10: 819236[2022-04-12]. https://pubmed.ncbi.nlm.nih.gov/35493085/. DOI: 10.3389/fcell.2022.819236.
- 46. Li P, Yang Y, Jin Y, et al. B7-H3 participates in human salivary gland epithelial cells apoptosis through NF-kappaB pathway in primary Sjogren's syndrome[J]. J Transl Med, 2019, 17(1): 268. DOI: 10.1186/s12967-019-2017-x.
- 47. Sica GL, Choi IH, Zhu G, et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity[J]. Immunity, 2003, 18(6): 849-861. DOI: 10.1016/s1074-7613(03)00152-3.
- 48. Cheung SS, Ou D, Metzger DL, et al. B7-H4 expression in normal and diseased human islet beta cells[J]. Pancreas, 2014, 43(1): 128-134. DOI: 10.1097/MPA.0b013e31829695d2.
- 49. Wang X, Wang T, Xu M, et al. B7-H4 overexpression impairs the immune response of T cells in human cervical carcinomas[J]. Hum Immunol, 2014, 75(12): 1203-1209. DOI: 10.1016/j.humimm.2014.10.002.
- 50. Pawar RD, Goilav B, Xia Y, et al. B7x/B7-H4 modulates the adaptive immune response and ameliorates renal injury in antibody-mediated nephritis[J]. Clin Exp Immunol, 2015, 179(2): 329-343. DOI: 10.1111/cei.12452.
- 51. Abadi YM, Jeon H, Ohaegbulam KC, et al. Host b7x promotes pulmonary metastasis of breast cancer[J]. J Immunol, 2013, 190(7): 3806-3814. DOI: 10.4049/jimmunol.1202439.
- 52. Qian Y, Sang Y, Wang FX, et al. Prognostic significance of B7-H4 expression in matched primary pancreatic cancer and liver metastases[J]. Oncotarget, 2016, 7(44): 72242-72249. DOI: 10.18632/oncotarget.12665.
- 53. Han S, Li Y, Zhang J, et al. Roles of immune inhibitory molecule B7-H4 in cervical cancer[J]. Oncol Rep, 2017, 37(4): 2308-2316. DOI: 10.3892/or.2017.5481.
- 54. 俞大亮, 厉小梅, 王喜梅, 等. 共刺激分子B7-H4在原发性干燥综合征患者唇腺组织和血清中的表达及意义[J]. 中华医学杂志, 2012, 92(39): 2775-2777. DOI: 10.3760/cma.j.issn.0376-2491.2012.39.011.Yu DL, Li XM, Wang XM, et al. B7-H4 expression of salivary gland and sera in patients with primary Sjogren's syndrome[J]. Natl Med J China, 2012, 92(39): 2775-2777. DOI: 10.3760/cma.j.issn.0376-2491.2012.39.011.
- 55. Zheng X, Wang Q, Yuan X, et al. B7-H4 inhibits the development of primary Sjogren's syndrome by regulating treg differentiation in NOD/Ltj mice[J/OL]. J Immunol Res, 2020, 2020: 4896727[2020-09-27]. https://pubmed.ncbi.nlm.nih.gov/33062721/. DOI: 10.1155/2020/4896727.
- 56. Huang X, Zhang X, Li E, et al. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy[J]. J Hematol Oncol, 2020, 13(1): 83. DOI: 10.1186/s13045-020-00917-y.
- 57. Wang L, Le Mercier I, Putra J, et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity[J]. Proc Natl Acad Sci USA, 2014, 111(41): 14846-14851. DOI: 10.1073/pnas.1407447111.
- 58. Wang G, Tai R, Wu Y, et al. The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune diseases and cancers[J]. Cytokine Growth Factor Rev, 2020, 52: 1-14. DOI: 10.1016/j.cytogfr.2020.02.002.
- 59. Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator[J]. Nat Immunol, 2005, 6(1): 90-98. DOI: 10.1038/ni1144.
- 60. Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator[J]. Proc Natl Acad Sci USA, 2005, 102(4): 1116-1121. DOI: 10.1073/pnas.0409071102.
- 61. Cheung TC, Oborne LM, Steinberg MW, et al. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment[J]. J Immunol, 2009, 183(11): 7286-7296. DOI: 10.4049/jimmunol.0902490.
- 62. Ye Z, Deng B, Wang C, et al. Decreased B and T lymphocyte attenuator in Behcet's disease may trigger abnormal Th17 and Th1 immune responses[J/OL]. Sci Rep, 2016, 6: 20401[2016-02-04]. https://pubmed.ncbi.nlm.nih.gov/26841832/. DOI: 10.1038/srep20401.