- Department of Ophthalmology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China;
Retinal vein occlusion (RVO) is one of the most common retinal vascular diseases causing blindness, macular edema (ME) is often secondary to it, which causes serious visual impairment to patients. Imaging biomarkers in the changes of retina and choroid of ME secondary to RVO (RVO-ME) have important clinical value in the evaluation of condition, curative effect and visual acuity prediction of patients with RVO-ME. Among them, the disorganization of the retinal inner layers, the integrity of external limiting membrane and ellipsoid zone, and the change of central macular thickness are reliable indexes to evaluate the prognosis of visual acuity; hyperreflective foci, subretinal fluid and intraretinal fluid can be used as important parameters to reflect the level of inflammation; prominent middle limiting membrane and paracentral acute middle maculopathy are the objective basis for judging the degree of retinal ischemia; the changes of choroidal vascular index and choroidal thickness also have potential advantages in evaluating the progress of the disease. Accurately grasp the characteristics of biological markers of RVO-ME related optical coherence tomography is conducive to its reasonable and accurate use in the clinical diagnosis and treatment of RVO-ME, and helpful to further explore the pathogenesis of the disease.
Citation: Liu Junru, Dong Weili. Research progress of optical coherence tomography biomarkers in macular edema secondary to retinal vein occlusion. Chinese Journal of Ocular Fundus Diseases, 2024, 40(5): 397-401. doi: 10.3760/cma.j.cn511434-20240311-00098 Copy
Copyright © the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
1. | Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors[J/OL]. J Glob Health, 2019, 9(1): 10427[2019-06-01]. https://pubmed.ncbi.nlm.nih.gov/31131101/. DOI: 10.7189/jogh.09.010427. |
2. | Mimouni M, Segev O, Dori D, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with macular edema secondary to vein occlusion[J]. Am J Ophthalmol, 2017, 186: 160-167. DOI: 10.1016/j.ajo.2017.08.005. |
3. | Noma H, Yasuda K, Shimura M. Cytokines and the pathogenesis of macular edema in branch retinal vein occlusion[J/OL]. J Ophthalmol, 2019, 2019: 5185128[2019-05-02]. https://pubmed.ncbi.nlm.nih.gov/31191997/. DOI: 10.1155/2019/5185128. |
4. | Tang Y, Cheng Y, Wang S, et al. Review: the development of risk factors and cytokines in retinal vein occlusion[J/OL]. Front Med (Lausanne), 2022, 9: 910600[2022-06-15]. https://pubmed.ncbi.nlm.nih.gov/35783660/. DOI: 10.3389/fmed.2022.910600. |
5. | Nicholson L, Talks SJ, Amoaku W, et al. Retinal vein occlusion (RVO) guideline: executive summary[J]. Eye (Lond), 2022, 36(5): 909-912. DOI: 10.1038/s41433-022-02007-4. |
6. | Kessler LJ, Bagautdinov D, Łabuz G, et al. Semi-automated quantification of retinal and choroidal biomarkers in retinal vascular diseases: agreement of spectral-domain optical coherence tomography with and without enhanced depth imaging mode[J/OL]. Diagnostics (Basel), 2022, 12(2): 333[2022-01-27]. https://pubmed.ncbi.nlm.nih.gov/35204422/. DOI: 10.3390/diagnostics12020333. |
7. | Goker YS, Atılgan CU, Tekin K, et al. Association between disorganization of the retinal inner layers and capillary nonperfusion area in patients with retinal vein occlusion[J]. Arq Bras Oftalmol, 2020, 83(6): 497-504. DOI: 10.5935/0004-2749.20200093. |
8. | Wang J, Cui Y, Vingopoulos F, et al. Disorganisation of retinal inner layers is associated with reduced contrast sensitivity in retinal vein occlusion[J]. Br J Ophthalmol, 2022, 106(2): 241-245. DOI: 10.1136/bjophthalmol-2020-317615. |
9. | Eldeeb M, Chan EW, Sun V, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with macular edema secondary to vein occlusion[J]. Am J Ophthalmol, 2018, 186: 167-168. DOI: 10.1016/j.ajo.2017.10.037. |
10. | Chan EW, Eldeeb M, Sun V, et al. Disorganization of retinal inner layers and ellipsoid zone disruption predict visual outcomes in central retinal vein occlusion[J]. Ophthalmol Retina, 2019, 3(1): 83-92. DOI: 10.1016/j.oret.2018.07.008. |
11. | Yiu G, Huang D, Wang Y, et al. Predictors of as-needed ranibizumab injection frequency in patients with macular edema following retinal vein occlusion[J]. Am J Ophthalmol, 2023, 249: 74-81. DOI: 10.1016/j.ajo.2023.01.004. |
12. | Zhang Z, Jiang Y, Huang X, et al. Clinical characteristics of paracentral acute middle maculopathy in eyes with retinal vascular occlusion diseases in chinese patients[J/OL]. J Ophthalmol, 2021, 2021: 8867570[2021-06-18]. https://pubmed.ncbi.nlm.nih.gov/34239722/. DOI: 10.1155/2021/8867570. |
13. | Furashova O, Matthè E. Hyperreflectivity of inner retinal layers as a quantitative parameter of ischemic damage in acute retinal vein occlusion (RVO): an optical coherence tomography study[J]. Clin Ophthalmol, 2020, 14: 2453-2462. DOI: 10.2147/OPTH.S260000. |
14. | Siedlecki J, Hattenbach LO, Feltgen N, et al. Biomarkers in the treatment of retinal vein occlusion[J]. Ophthalmologie, 2022, 119(11): 1111-1120. DOI: 10.1007/s00347-022-01732-1. |
15. | Scharf J, Freund KB, Sadda S, et al. Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses[J/OL]. Prog Retin Eye Res, 2021, 81: 100884[2020-08-09]. https://pubmed.ncbi.nlm.nih.gov/32783959/. DOI: 10.1016/j.preteyeres.2020.100884. |
16. | 孙梅, 郝晓凤, 谢立科, 等. 视网膜静脉阻塞继发黄斑水肿的OCT影像指标研究进展[J]. 国际眼科杂志, 2023, 23(1): 58-61. DOI: 10.3980/j.issn.1672-5123.2023.1.11.Sun M, Hao XF, Xie LK, et al. Research progress on optical coherence tomography imaging indicators of macular edema secondary to retinal vein occlusion[J]. Int Eye Sci, 2023, 23(1): 58-61. DOI: 10.3980/j.issn.1672-5123.2023.1.11. |
17. | Browning DJ, Punjabi OS, Lee C. Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography[J]. Clin Ophthalmol, 2016, 11: 71-79. DOI: 10.2147/OPTH.S122683. |
18. | Maltsev DS, Kulikov AN, Burnasheva MA. Choriocapillaris alteration in patients with paracentral acute middle maculopathy[J]. Eur J Ophthalmol, 2022, 32(6): 3622-3628. DOI: 10.1177/11206721221074446. |
19. | Tang F, Qin X, Lu J, et al. Optical coherence tomography predictors of short-term visual acuity in eyes with macular edema secondary to retinal vein occlusion treated with intravitreal conbercept[J]. Retina, 2020, 40(4): 773-785. DOI: 10.1097/IAE.00000000000002444. |
20. | Yiu G, Welch RJ, Wang Y, et al. Spectral-domain OCT predictors of visual outcomes after Ranibizumab treatment for macular edema resulting from retinal vein occlusion[J]. Ophthalmol Retina, 2020, 4(1): 67-76. DOI: 10.1016/j.oret.2019.08.009. |
21. | Chatziralli I, Kazantzis D, Kroupis C, et al. The impact of laboratory findings and optical coherence tomography biomarkers on response to intravitreal anti-VEGF treatment in patients with retinal vein occlusion[J]. Int Ophthalmol, 2022, 42(11): 3449-3457. DOI: 10.1007/s10792-022-02344-z. |
22. | Liu H, Li S, Zhang Z, et al. Predicting the visual acuity for retinal vein occlusion after Ranibizumab therapy with an original ranking for macular microstructure[J]. Exp Ther Med, 2018, 15(1): 890-896. DOI: 10.3892/etm.2017.5437. |
23. | Moon BG, Cho AR, Kim YN, et al. Predictors of refractory macular edema after branch retinal vein occlusion following intravitreal Bevacizumab[J]. Retina, 2018, 38(6): 1166-1174. DOI: 10.1097/IAE.0000000000001674. |
24. | Ciulla TA, Kapik B, Hu A, et al. Anatomic biomarkers of macular edema associated with retinal vein occlusion[J]. Ophthalmol Retina, 2022, 6(12): 1206-1220. DOI: 10.1016/j.oret.2022.06.016. |
25. | Segal O, Yavnieli R, Mimouni M, et al. Optical coherence tomography biomarkers predicting visual acuity change after intravitreal Bevacizumab injections for macular edema secondary to branch retinal vein occlusion[J]. Ophthalmologica, 2022, 245(1): 19-24. DOI: 10.1159/000519373. |
26. | Chatziralli I, Theodossiadis G, Chatzirallis A, et al. Ranibizumab for retinal vein occlusion: predictive factors and long-term outcomes in real-life data[J]. Retina, 2018, 38(3): 559-568. DOI: 10.1097/IAE.0000000000001579. |
27. | Han X, Zhang L, Tang J, et al. Correlation of photoreceptor damage with anti-retina antibodies level in aqueous humor in macular edema patients[J/OL]. Sci Rep, 2022, 12(1): 21212[2022-12-08]. https://pubmed.ncbi.nlm.nih.gov/36481862/. DOI: 10.1038/s41598-022-25875-y. |
28. | Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, et al. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications[J/OL]. J Ophthalmol, 2021, 2021: 6096017[2021-12-17]. https://pubmed.ncbi.nlm.nih.gov/34956669/. DOI: 10.1155/2021/6096017. |
29. | Castro-Navarro V, Monferrer-Adsuara C, Navarro-Palop C, et al. Optical coherence tomography biomarkers in patients with macular edema secondary to retinal vein occlusion treated with dexamethasone implant[J/OL]. BMC Ophthalmol, 2022, 22(1): 191[2022-04-26]. https://pubmed.ncbi.nlm.nih.gov/35473615/. DOI: 10.1186/s12886-022-02415-w. |
30. | Hwang HS, Chae JB, Kim JY, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967. DOI: 10.1167/iovs.17-22725. |
31. | Ding X, Hu Y, Yu H, et al. Changes of optical coherence tomography biomarkers in macular edema secondary to retinal vein occlusion after anti-VEGF and anti-inflammatory therapies[J]. Drug Des Devel Ther, 2022, 16: 717-725. DOI: 10.2147/DDDT.S351683. |
32. | 雍红芳, 戚卉, 吴瑛洁, 等. 视网膜静脉阻塞继发黄斑水肿发病机制及黄斑水肿影响视功能的研究进展[J]. 国际眼科杂志, 2019, 19(11): 1888-1891. DOI: 10.3980/j.issn.1672-5123.2019.11.17.Yong HF, Qi H, Wu YJ, et al. Research progress on the pathogenesis of macular edema secondary to retinal vein occlusion and the effect of macular edema on visual function[J]. Int Eye Sci, 2019, 19(11): 1888-1891. DOI: 10.3980/j.issn.1672-5123.2019.11.17. |
33. | Park J, Felfeli T, Kherani IZ, et al. Prevalence and clinical implications of subretinal fluid in retinal diseases: a real-world cohort study[J/OL]. BMJ Open Ophthalmol, 2023, 8(1): e001214[2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/37039095/. DOI: 10.1136/bmjophth-2022-001214. |
34. | Horozoglu F, Sener H, Polat OA, et al. Predictive impact of optical coherence tomography biomarkers in anti-vascular endothelial growth factor resistant macular edema treated with dexamethasone implant[J/OL]. Photodiagnosis Photodyn Ther, 2022, 42: 103167[2022-10-17]. https://pubmed.ncbi.nlm.nih.gov/36261095/. DOI: 10.1016/j.pdpdt.2022.103167. |
35. | Kazantzis D, Sergentanis TN, Machairoudia G, et al. Correlation between imaging morphological findings and laboratory biomarkers in patients with retinal vein occlusion[J]. Ophthalmol Ther, 2023, 12(2): 1239-1249. DOI: 10.1007/s40123-023-00677-1. |
36. | Muste JC, Iyer AI, Kalur A, et al. The quantification and impact of persistent retinal fluid compartments on best-corrected visual acuity of patients with retinal vein occlusion[J]. Ophthalmic Surg Lasers Imaging Retina, 2022, 53(3): 139-147. DOI: 10.3928/23258160-20220215-03. |
37. | Konidaris VE, Tsaousis KT, Anzidei R, et al. Real-world results of switching treatment from Ranibizumab to Aflibercept in macular oedema secondary to branch retinal vein occlusion[J]. Ophthalmol Ther, 2018, 7(2): 387-395. DOI: 10.1007/s40123-018-0149-3. |
38. | Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, et al. Guidelines for the management of retinal vein occlusion by the european society of retina specialists (EURETINA)[J]. Ophthalmologica, 2019, 242(3): 123-162. DOI: 10.1159/000502041. |
39. | 武佳玮, 樊芳, 贾志旸. 光学相干断层扫描形态特征对视网膜静脉阻塞继发黄斑水肿患者预后的影响[J]. 中国误诊学杂志, 2020, 15(2): 49-55.Wu JW, Fan F, Jia ZY, et al. Correlation analysis of optical coherence tomography morphological characteristics in prognosis of patients with secondary macular edema due to retinal vein occlusion[J]. Chin J Misdiagn, 2020, 15(2): 49-55. |
40. | Zhou J, Ma H, Zhou X, et al. Two-week central macular thickness reduction rate >37% predicts the long-term efficacy of anti-vascular endothelial growth factor treatment for macular edema secondary to retinal vein occlusion[J/OL]. Front Med (Lausanne), 2022, 9: 851238[2022-03-07]. https://pubmed.ncbi.nlm.nih.gov/35355596/. DOI: 10.3389/fmed.2022.851238. |
41. | Roh HC, Lee GW, Kang SW, et al. Parafoveal inner retinal thinning as the biomarker predicting less recurrence of macular edema in central retinal vein occlusion after discontinuing antivascular endothelial growth factor[J]. Retina, 2022, 42(12): 2336-2345. DOI: 10.1097/IAE.0000000000003616. |
42. | Shiono A, Kogo J, Sasaki H, et al. Optical coherence tomography findings as a predictor of clinical course in patients with branch retinal vein occlusion treated with Ranibizumab[J/OL]. PLoS One, 2018, 13(6): e0199552[2018-06-20]. https://pubmed.ncbi.nlm.nih.gov/29924853/. DOI: 10.1371/journal.pone.0199552. |
43. | Aribas YK, Hondur AM, Tezel TH. Choroidal vascularity index and choriocapillary changes in retinal vein occlusions[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(11): 2389-2397. DOI: 10.1007/s00417-020-04886-3. |
44. | 薛妍琦. 视网膜分支静脉阻塞眼的不同区域脉络膜厚度和血管指数变化的研究[D]. 沈阳: 中国医科大学, 2022.Xue YQ. Study on the changes of choroidal thickness and vascular index in different regions of the eye with branch retinal vein occlusion[D]. Shenyang: China Medical University, 2022. |
45. | Hwang BE, Kim M, Park YH. Role of the choroidal vascularity index in branch retinal vein occlusion (BRVO) with macular edema[J/OL]. PLoS One, 2021, 16(10): e0258728[2021-10-21]. https://pubmed.ncbi.nlm.nih.gov/34673807/. DOI: 10.1371/journal.pone.0258728. |
46. | Loiudice P, Covello G, Figus M, et al. Choroidal vascularity index in central and branch retinal vein occlusion[J/OL]. J Clin Med, 2022, 11(16): 4756[2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/36012996/. DOI: 10.3390/jcm11164756. |
47. | Breher K, Terry L, Bower T, et al. Choroidal biomarkers: a repeatability and topographical comparison of choroidal thickness and choroidal vascularity index in healthy eyes[J/OL]. Transl Vis Sci Technol, 2020, 9(11): 8[2020-10-08]. https://pubmed.ncbi.nlm.nih.gov/33133771/. DOI: 10.1167/tvst.9.11.8. |
48. | Choi SU, Oh JY, Kim JT. Correlations between choroidal thickness and renal function in patients with retinal vein occlusion[J/OL]. Sci Rep, 2020, 10(1): 16865[2020-10-08]. https://pubmed.ncbi.nlm.nih.gov/33033387/. DOI: 10.1038/s41598-020-74058-0. |
49. | 舒娜, 姜波, 史春生. 视网膜静脉阻塞继发黄斑水肿患者黄斑中心凹下脉络膜厚度变化研究[J]. 眼科新进展, 2021, 41(2): 154-157. DOI: 10.13389/j.cnki.ran.2021.0032.Shu N, Jiang B, Shi CS. Changes in subfoveal choroidal thickness in eyes with macular edema second-ary to retinal vein occlusion[J]. Rec Adv Ophthalmol, 2021, 41(2): 154-157. DOI: 10.13389/j.cnki.ran.2021.0032. |
50. | Keidel LF, Zwingelberg S, Schworm B, et al. Pachychoroid disease and its association with retinal vein occlusion: a case-control study[J/OL]. Sci Rep, 2021, 11(1): 19854[2021-10-06]. https://pubmed.ncbi.nlm.nih.gov/34615888/. DOI: 10.1038/s41598-021-99115-0. |
51. | Rayess N, Rahimy E, Ying GS, et al. Baseline choroidal thickness as a short-term predictor of visual acuity improvement following antivascular endothelial growth factor therapy in branch retinal vein occlusion[J]. Br J Ophthalmol, 2019, 103(1): 55-59. DOI: 10.1136/bjophthalmol-2018-311898. |
52. | Aljundi W, Gradinger F, Langenbucher A, et al. Choroidal thickness as a possible predictor of non-response to intravitreal Bevacizumab for macular edema after retinal vein occlusion[J/OL]. Sci Rep, 2023, 13(1): 451[2023-01-09]. https://pubmed.ncbi.nlm.nih.gov/36624124/. DOI: 10.1038/s41598-023-27753-7. |
- 1. Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors[J/OL]. J Glob Health, 2019, 9(1): 10427[2019-06-01]. https://pubmed.ncbi.nlm.nih.gov/31131101/. DOI: 10.7189/jogh.09.010427.
- 2. Mimouni M, Segev O, Dori D, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with macular edema secondary to vein occlusion[J]. Am J Ophthalmol, 2017, 186: 160-167. DOI: 10.1016/j.ajo.2017.08.005.
- 3. Noma H, Yasuda K, Shimura M. Cytokines and the pathogenesis of macular edema in branch retinal vein occlusion[J/OL]. J Ophthalmol, 2019, 2019: 5185128[2019-05-02]. https://pubmed.ncbi.nlm.nih.gov/31191997/. DOI: 10.1155/2019/5185128.
- 4. Tang Y, Cheng Y, Wang S, et al. Review: the development of risk factors and cytokines in retinal vein occlusion[J/OL]. Front Med (Lausanne), 2022, 9: 910600[2022-06-15]. https://pubmed.ncbi.nlm.nih.gov/35783660/. DOI: 10.3389/fmed.2022.910600.
- 5. Nicholson L, Talks SJ, Amoaku W, et al. Retinal vein occlusion (RVO) guideline: executive summary[J]. Eye (Lond), 2022, 36(5): 909-912. DOI: 10.1038/s41433-022-02007-4.
- 6. Kessler LJ, Bagautdinov D, Łabuz G, et al. Semi-automated quantification of retinal and choroidal biomarkers in retinal vascular diseases: agreement of spectral-domain optical coherence tomography with and without enhanced depth imaging mode[J/OL]. Diagnostics (Basel), 2022, 12(2): 333[2022-01-27]. https://pubmed.ncbi.nlm.nih.gov/35204422/. DOI: 10.3390/diagnostics12020333.
- 7. Goker YS, Atılgan CU, Tekin K, et al. Association between disorganization of the retinal inner layers and capillary nonperfusion area in patients with retinal vein occlusion[J]. Arq Bras Oftalmol, 2020, 83(6): 497-504. DOI: 10.5935/0004-2749.20200093.
- 8. Wang J, Cui Y, Vingopoulos F, et al. Disorganisation of retinal inner layers is associated with reduced contrast sensitivity in retinal vein occlusion[J]. Br J Ophthalmol, 2022, 106(2): 241-245. DOI: 10.1136/bjophthalmol-2020-317615.
- 9. Eldeeb M, Chan EW, Sun V, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with macular edema secondary to vein occlusion[J]. Am J Ophthalmol, 2018, 186: 167-168. DOI: 10.1016/j.ajo.2017.10.037.
- 10. Chan EW, Eldeeb M, Sun V, et al. Disorganization of retinal inner layers and ellipsoid zone disruption predict visual outcomes in central retinal vein occlusion[J]. Ophthalmol Retina, 2019, 3(1): 83-92. DOI: 10.1016/j.oret.2018.07.008.
- 11. Yiu G, Huang D, Wang Y, et al. Predictors of as-needed ranibizumab injection frequency in patients with macular edema following retinal vein occlusion[J]. Am J Ophthalmol, 2023, 249: 74-81. DOI: 10.1016/j.ajo.2023.01.004.
- 12. Zhang Z, Jiang Y, Huang X, et al. Clinical characteristics of paracentral acute middle maculopathy in eyes with retinal vascular occlusion diseases in chinese patients[J/OL]. J Ophthalmol, 2021, 2021: 8867570[2021-06-18]. https://pubmed.ncbi.nlm.nih.gov/34239722/. DOI: 10.1155/2021/8867570.
- 13. Furashova O, Matthè E. Hyperreflectivity of inner retinal layers as a quantitative parameter of ischemic damage in acute retinal vein occlusion (RVO): an optical coherence tomography study[J]. Clin Ophthalmol, 2020, 14: 2453-2462. DOI: 10.2147/OPTH.S260000.
- 14. Siedlecki J, Hattenbach LO, Feltgen N, et al. Biomarkers in the treatment of retinal vein occlusion[J]. Ophthalmologie, 2022, 119(11): 1111-1120. DOI: 10.1007/s00347-022-01732-1.
- 15. Scharf J, Freund KB, Sadda S, et al. Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses[J/OL]. Prog Retin Eye Res, 2021, 81: 100884[2020-08-09]. https://pubmed.ncbi.nlm.nih.gov/32783959/. DOI: 10.1016/j.preteyeres.2020.100884.
- 16. 孙梅, 郝晓凤, 谢立科, 等. 视网膜静脉阻塞继发黄斑水肿的OCT影像指标研究进展[J]. 国际眼科杂志, 2023, 23(1): 58-61. DOI: 10.3980/j.issn.1672-5123.2023.1.11.Sun M, Hao XF, Xie LK, et al. Research progress on optical coherence tomography imaging indicators of macular edema secondary to retinal vein occlusion[J]. Int Eye Sci, 2023, 23(1): 58-61. DOI: 10.3980/j.issn.1672-5123.2023.1.11.
- 17. Browning DJ, Punjabi OS, Lee C. Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography[J]. Clin Ophthalmol, 2016, 11: 71-79. DOI: 10.2147/OPTH.S122683.
- 18. Maltsev DS, Kulikov AN, Burnasheva MA. Choriocapillaris alteration in patients with paracentral acute middle maculopathy[J]. Eur J Ophthalmol, 2022, 32(6): 3622-3628. DOI: 10.1177/11206721221074446.
- 19. Tang F, Qin X, Lu J, et al. Optical coherence tomography predictors of short-term visual acuity in eyes with macular edema secondary to retinal vein occlusion treated with intravitreal conbercept[J]. Retina, 2020, 40(4): 773-785. DOI: 10.1097/IAE.00000000000002444.
- 20. Yiu G, Welch RJ, Wang Y, et al. Spectral-domain OCT predictors of visual outcomes after Ranibizumab treatment for macular edema resulting from retinal vein occlusion[J]. Ophthalmol Retina, 2020, 4(1): 67-76. DOI: 10.1016/j.oret.2019.08.009.
- 21. Chatziralli I, Kazantzis D, Kroupis C, et al. The impact of laboratory findings and optical coherence tomography biomarkers on response to intravitreal anti-VEGF treatment in patients with retinal vein occlusion[J]. Int Ophthalmol, 2022, 42(11): 3449-3457. DOI: 10.1007/s10792-022-02344-z.
- 22. Liu H, Li S, Zhang Z, et al. Predicting the visual acuity for retinal vein occlusion after Ranibizumab therapy with an original ranking for macular microstructure[J]. Exp Ther Med, 2018, 15(1): 890-896. DOI: 10.3892/etm.2017.5437.
- 23. Moon BG, Cho AR, Kim YN, et al. Predictors of refractory macular edema after branch retinal vein occlusion following intravitreal Bevacizumab[J]. Retina, 2018, 38(6): 1166-1174. DOI: 10.1097/IAE.0000000000001674.
- 24. Ciulla TA, Kapik B, Hu A, et al. Anatomic biomarkers of macular edema associated with retinal vein occlusion[J]. Ophthalmol Retina, 2022, 6(12): 1206-1220. DOI: 10.1016/j.oret.2022.06.016.
- 25. Segal O, Yavnieli R, Mimouni M, et al. Optical coherence tomography biomarkers predicting visual acuity change after intravitreal Bevacizumab injections for macular edema secondary to branch retinal vein occlusion[J]. Ophthalmologica, 2022, 245(1): 19-24. DOI: 10.1159/000519373.
- 26. Chatziralli I, Theodossiadis G, Chatzirallis A, et al. Ranibizumab for retinal vein occlusion: predictive factors and long-term outcomes in real-life data[J]. Retina, 2018, 38(3): 559-568. DOI: 10.1097/IAE.0000000000001579.
- 27. Han X, Zhang L, Tang J, et al. Correlation of photoreceptor damage with anti-retina antibodies level in aqueous humor in macular edema patients[J/OL]. Sci Rep, 2022, 12(1): 21212[2022-12-08]. https://pubmed.ncbi.nlm.nih.gov/36481862/. DOI: 10.1038/s41598-022-25875-y.
- 28. Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, et al. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications[J/OL]. J Ophthalmol, 2021, 2021: 6096017[2021-12-17]. https://pubmed.ncbi.nlm.nih.gov/34956669/. DOI: 10.1155/2021/6096017.
- 29. Castro-Navarro V, Monferrer-Adsuara C, Navarro-Palop C, et al. Optical coherence tomography biomarkers in patients with macular edema secondary to retinal vein occlusion treated with dexamethasone implant[J/OL]. BMC Ophthalmol, 2022, 22(1): 191[2022-04-26]. https://pubmed.ncbi.nlm.nih.gov/35473615/. DOI: 10.1186/s12886-022-02415-w.
- 30. Hwang HS, Chae JB, Kim JY, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967. DOI: 10.1167/iovs.17-22725.
- 31. Ding X, Hu Y, Yu H, et al. Changes of optical coherence tomography biomarkers in macular edema secondary to retinal vein occlusion after anti-VEGF and anti-inflammatory therapies[J]. Drug Des Devel Ther, 2022, 16: 717-725. DOI: 10.2147/DDDT.S351683.
- 32. 雍红芳, 戚卉, 吴瑛洁, 等. 视网膜静脉阻塞继发黄斑水肿发病机制及黄斑水肿影响视功能的研究进展[J]. 国际眼科杂志, 2019, 19(11): 1888-1891. DOI: 10.3980/j.issn.1672-5123.2019.11.17.Yong HF, Qi H, Wu YJ, et al. Research progress on the pathogenesis of macular edema secondary to retinal vein occlusion and the effect of macular edema on visual function[J]. Int Eye Sci, 2019, 19(11): 1888-1891. DOI: 10.3980/j.issn.1672-5123.2019.11.17.
- 33. Park J, Felfeli T, Kherani IZ, et al. Prevalence and clinical implications of subretinal fluid in retinal diseases: a real-world cohort study[J/OL]. BMJ Open Ophthalmol, 2023, 8(1): e001214[2023-02-21]. https://pubmed.ncbi.nlm.nih.gov/37039095/. DOI: 10.1136/bmjophth-2022-001214.
- 34. Horozoglu F, Sener H, Polat OA, et al. Predictive impact of optical coherence tomography biomarkers in anti-vascular endothelial growth factor resistant macular edema treated with dexamethasone implant[J/OL]. Photodiagnosis Photodyn Ther, 2022, 42: 103167[2022-10-17]. https://pubmed.ncbi.nlm.nih.gov/36261095/. DOI: 10.1016/j.pdpdt.2022.103167.
- 35. Kazantzis D, Sergentanis TN, Machairoudia G, et al. Correlation between imaging morphological findings and laboratory biomarkers in patients with retinal vein occlusion[J]. Ophthalmol Ther, 2023, 12(2): 1239-1249. DOI: 10.1007/s40123-023-00677-1.
- 36. Muste JC, Iyer AI, Kalur A, et al. The quantification and impact of persistent retinal fluid compartments on best-corrected visual acuity of patients with retinal vein occlusion[J]. Ophthalmic Surg Lasers Imaging Retina, 2022, 53(3): 139-147. DOI: 10.3928/23258160-20220215-03.
- 37. Konidaris VE, Tsaousis KT, Anzidei R, et al. Real-world results of switching treatment from Ranibizumab to Aflibercept in macular oedema secondary to branch retinal vein occlusion[J]. Ophthalmol Ther, 2018, 7(2): 387-395. DOI: 10.1007/s40123-018-0149-3.
- 38. Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, et al. Guidelines for the management of retinal vein occlusion by the european society of retina specialists (EURETINA)[J]. Ophthalmologica, 2019, 242(3): 123-162. DOI: 10.1159/000502041.
- 39. 武佳玮, 樊芳, 贾志旸. 光学相干断层扫描形态特征对视网膜静脉阻塞继发黄斑水肿患者预后的影响[J]. 中国误诊学杂志, 2020, 15(2): 49-55.Wu JW, Fan F, Jia ZY, et al. Correlation analysis of optical coherence tomography morphological characteristics in prognosis of patients with secondary macular edema due to retinal vein occlusion[J]. Chin J Misdiagn, 2020, 15(2): 49-55.
- 40. Zhou J, Ma H, Zhou X, et al. Two-week central macular thickness reduction rate >37% predicts the long-term efficacy of anti-vascular endothelial growth factor treatment for macular edema secondary to retinal vein occlusion[J/OL]. Front Med (Lausanne), 2022, 9: 851238[2022-03-07]. https://pubmed.ncbi.nlm.nih.gov/35355596/. DOI: 10.3389/fmed.2022.851238.
- 41. Roh HC, Lee GW, Kang SW, et al. Parafoveal inner retinal thinning as the biomarker predicting less recurrence of macular edema in central retinal vein occlusion after discontinuing antivascular endothelial growth factor[J]. Retina, 2022, 42(12): 2336-2345. DOI: 10.1097/IAE.0000000000003616.
- 42. Shiono A, Kogo J, Sasaki H, et al. Optical coherence tomography findings as a predictor of clinical course in patients with branch retinal vein occlusion treated with Ranibizumab[J/OL]. PLoS One, 2018, 13(6): e0199552[2018-06-20]. https://pubmed.ncbi.nlm.nih.gov/29924853/. DOI: 10.1371/journal.pone.0199552.
- 43. Aribas YK, Hondur AM, Tezel TH. Choroidal vascularity index and choriocapillary changes in retinal vein occlusions[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(11): 2389-2397. DOI: 10.1007/s00417-020-04886-3.
- 44. 薛妍琦. 视网膜分支静脉阻塞眼的不同区域脉络膜厚度和血管指数变化的研究[D]. 沈阳: 中国医科大学, 2022.Xue YQ. Study on the changes of choroidal thickness and vascular index in different regions of the eye with branch retinal vein occlusion[D]. Shenyang: China Medical University, 2022.
- 45. Hwang BE, Kim M, Park YH. Role of the choroidal vascularity index in branch retinal vein occlusion (BRVO) with macular edema[J/OL]. PLoS One, 2021, 16(10): e0258728[2021-10-21]. https://pubmed.ncbi.nlm.nih.gov/34673807/. DOI: 10.1371/journal.pone.0258728.
- 46. Loiudice P, Covello G, Figus M, et al. Choroidal vascularity index in central and branch retinal vein occlusion[J/OL]. J Clin Med, 2022, 11(16): 4756[2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/36012996/. DOI: 10.3390/jcm11164756.
- 47. Breher K, Terry L, Bower T, et al. Choroidal biomarkers: a repeatability and topographical comparison of choroidal thickness and choroidal vascularity index in healthy eyes[J/OL]. Transl Vis Sci Technol, 2020, 9(11): 8[2020-10-08]. https://pubmed.ncbi.nlm.nih.gov/33133771/. DOI: 10.1167/tvst.9.11.8.
- 48. Choi SU, Oh JY, Kim JT. Correlations between choroidal thickness and renal function in patients with retinal vein occlusion[J/OL]. Sci Rep, 2020, 10(1): 16865[2020-10-08]. https://pubmed.ncbi.nlm.nih.gov/33033387/. DOI: 10.1038/s41598-020-74058-0.
- 49. 舒娜, 姜波, 史春生. 视网膜静脉阻塞继发黄斑水肿患者黄斑中心凹下脉络膜厚度变化研究[J]. 眼科新进展, 2021, 41(2): 154-157. DOI: 10.13389/j.cnki.ran.2021.0032.Shu N, Jiang B, Shi CS. Changes in subfoveal choroidal thickness in eyes with macular edema second-ary to retinal vein occlusion[J]. Rec Adv Ophthalmol, 2021, 41(2): 154-157. DOI: 10.13389/j.cnki.ran.2021.0032.
- 50. Keidel LF, Zwingelberg S, Schworm B, et al. Pachychoroid disease and its association with retinal vein occlusion: a case-control study[J/OL]. Sci Rep, 2021, 11(1): 19854[2021-10-06]. https://pubmed.ncbi.nlm.nih.gov/34615888/. DOI: 10.1038/s41598-021-99115-0.
- 51. Rayess N, Rahimy E, Ying GS, et al. Baseline choroidal thickness as a short-term predictor of visual acuity improvement following antivascular endothelial growth factor therapy in branch retinal vein occlusion[J]. Br J Ophthalmol, 2019, 103(1): 55-59. DOI: 10.1136/bjophthalmol-2018-311898.
- 52. Aljundi W, Gradinger F, Langenbucher A, et al. Choroidal thickness as a possible predictor of non-response to intravitreal Bevacizumab for macular edema after retinal vein occlusion[J/OL]. Sci Rep, 2023, 13(1): 451[2023-01-09]. https://pubmed.ncbi.nlm.nih.gov/36624124/. DOI: 10.1038/s41598-023-27753-7.
-
Previous Article
新型冠状病毒感染相关急性黄斑神经视网膜病变2例 -
Next Article
Current research status of negative immune checkpoint factors in autoimmune eye diseases