The validity and reasonableness of emotional data are the key issues in the cognitive affective computing research. Effects of the emotion recognition are decided by the quality of selected data directly. Therefore, it is an important part of affective computing research to build affective computing database with good performance, so that it is the hot spot of research in this field. In this paper, the performance of two classical cognitive affective computing databases, the Massachusetts Institute of Technology (MIT) cognitive affective computing database and Germany Augsburg University emotion recognition database were compared, their data structure and data types were compared respectively, and emotional recognition effect based on the data were studied comparatively. The results indicated that the analysis based on the physical parameters could get the effective emotional recognition, and would be a feasible method of pressure emotional evaluation. Because of the lack of stress emotional evaluation data based on the physiological parameters domestically, there is not a public stress emotional database. We hereby built a dataset for the stress evaluation towards the high stress group in colleges, candidates of postgraduates of Ph.D and master as the subjects. We then acquired their physiological parameters, and performed the pressure analysis based on this database. The results indicated that this dataset had a certain reference value for the stress evaluation, and we hope this research can provide a reference and support for emotion evaluation and analysis.
Citation: LIXin, DUXiaojuan, ZHANGYunpeng, YINGLijuan, LIChangwu. Research on the Performance Comparing and Building of Affective Computing Database Based on Physiological Parameters. Journal of Biomedical Engineering, 2014, 31(4): 782-787. doi: 10.7507/1001-5515.20140146 Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved