1. |
Hamada M, Zaidan B B, Zaidan A A. A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison. Journal of Medical Systems, 2018, 42(9): 162.
|
2. |
Liu S, Wang Z, An Y, et al. EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network. Knowledge-Based Systems, 2023, 265: 110372.
|
3. |
Li M, Xu H, Liu X, et al. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technology and Health Care, 2018, 26(S1): 509-519.
|
4. |
Yan C, Chang X, Li Z, et al. ZeroNAS: Differentiable generative adversarial networks search for zero-shot learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(12): 9733-9740.
|
5. |
Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG. IEEE Transactions on Affective Computing, 2014, 5(3): 327-339.
|
6. |
Duan R N, Zhu J Y, Lu B L. Differential entropy feature for EEG-based emotion classification//2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego: IEEE, 2013: 81-84.
|
7. |
Li J, Zhang Z, He H. Hierarchical convolutional neural networks for EEG-based emotion recognition. Cognitive Computation, 2018, 10: 368-380.
|
8. |
Cheng C, Yu Z, Zhang Y, et al. Hybrid network using dynamic graph convolution and temporal self-attention for EEG-based emotion recognition. IEEE Transactions on Neural Networks and Learning Systems, 2023: 2162-2388.
|
9. |
Rahman M A, Anjum A, Milu M M H, et al. Emotion recognition from EEG-based relative power spectral topography using convolutional neural network. Array, 2021, 11: 100072.
|
10. |
Wang Z, Wang Y, Zhang J, et al. Spatial-temporal feature fusion neural network for EEG-based emotion recognition. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
|
11. |
王伟, 周建华, 刘紫恒, 等. 基于时空Inception残差注意力网络的脑电情绪识别. 重庆邮电大学学报(自然科学版), 2024, 36(1): 68-75.
|
12. |
崔发昌. 时-频-空多维融合的脑电情绪分类方法. 南京: 南京邮电大学, 2023.
|
13. |
宋昊, 徐颂, 刘国明, 等. 基于独立成分分析的非侵入式脑-机接口眼电伪迹自动去除算法. 生物医学工程学杂志, 2022, 39(6): 1074-1081.
|
14. |
Jiang W, Zhang D, Ling L, et al. Time series classification based on image transformation using feature fusion strategy. Neural Processing Letters, 2022, 54(5): 3727-3748.
|
15. |
冯国红, 王宏恩, 刁鹏飞, 等. 小样本下基于递归图和迁移学习的轴承故障诊断. 机床与液压, 2024, 52(16): 240-248.
|
16. |
Al Moteri M, Mahesh T R, Thakur A, et al. Enhancing accessibility for improved diagnosis with modified EfficientNetV2-S and cyclic learning rate strategy in women with disabilities and breast cancer. Frontiers in Medicine, 2024, 11: 1373244.
|
17. |
Mouhcine K, Zrira N, Elafi I, et al. STEFF: spatio-temporal EfficientNet for dynamic texture classification in outdoor scenes. Heliyon, 2024, 10(3): e25360.
|
18. |
Zhao Y, Ju Z, Sun T, et al. TGC-YOLOv5: an enhanced YOLOv5 drone detection model based on transformer, GAM & CA attention mechanism. Drones, 2023, 7(7): 446.
|
19. |
仲峥迪, 屠良平, 冯雪琦, 等. EfficientNetV2-S-Triplet 7: 一种改进的星系形态学分类算法. 天文学报, 2024, 65(2): 55-68.
|
20. |
Cui L, Dong Z, Xu H, et al. Triplet attention-enhanced residual tree-inspired decision network: a hierarchical fault diagnosis model for unbalanced bearing datasets. Advanced Engineering Informatics, 2024, 59: 102322.
|
21. |
聂聃, 王晓韡, 段若男, 等. 基于脑电的情绪识别研究综述. 中国生物医学工程学报, 2012, 31(4): 595-606.
|
22. |
Zheng W L, Lu B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162-175.
|
23. |
焦凯强, 王湖斐, 郭茂田. 脑电信号中的频谱不对称指数特征与情绪识别. 科学技术与工程, 2018, 18(17): 145-149.
|
24. |
王雪蒙, 郭滨, 马欣. 基于优化变分模态分解的脑电情绪识别. 计算机应用与软件, 2024, 41(2): 80-85,177.
|
25. |
Zhang G, Davoodnia V, Sepas-Moghaddam A, et al. Classification of hand movements from EEG using a deep attention-based LSTM network. IEEE Sensors Journal, 2019, 20(6): 3113-3122.
|
26. |
张冰雪, 李文楷. 少量通道脑电信号的实时情绪分类模型. 小型微型计算机系统, 2024, 45(2): 271-277.
|
27. |
戴紫玉,马玉良, 高云园, 等. 基于多尺度卷积核CNN的脑电情绪识别. 传感技术学报, 2021, 34(4): 496-503.
|
28. |
Yang C J, Li W C, Wan M T, et al. Real-time EEG-based affective computing using on-chip learning long-term recurrent convolutional network//2021 IEEE International Symposium on Circuits and Systems (ISCAS). Daegu: IEEE, 2021: 1-5.
|
29. |
谷学静, 刘佳, 郭宇承, 等. 采用多尺度多路混合注意力机制的脑电情绪识别方法. 计算机工程与应用, 2024, 60(19): 130-138.
|
30. |
刘柯, 张孝, 李沛洋, 等. 基于脑功能网络和共空间模式分析的脑电情绪识别. 计算机应用研究, 2021, 38(5): 1344-1349.
|
31. |
高越, 傅湘玲, 欧阳天雄, 等. 基于时空自适应图卷积神经网络的脑电信号情绪识别. 计算机科学, 2022, 49(4): 30-36.
|
32. |
李奇, 常立娜, 武岩, 等. 基于深层图卷积的EEG情绪识别方法研究. 电子测量技术, 2024, 47(4): 18-22.
|
33. |
谢松云, 雷凌俊, 孙江, 等. 基于IWOA-ELM算法的脑电情绪识别方法研究. 生物医学工程学杂志, 2024, 41(1): 1-8.
|