1. |
Koenen K C, Ratanatharathorn A, Ng L, et al. Posttraumatic stress disorder in the world mental health surveys. Psychol Med, 2017, 47(13): 2260-2274.
|
2. |
Pathak G A, Singh K, Wendt F R, et al. Genetically regulated multi-omics study for symptom clusters of posttraumatic stress disorder highlights pleiotropy with hematologic and cardiometabolic traits. Mol Psychiatry, 2022, 27(3): 1394-1404.
|
3. |
Pathak G A, Singh K, Choi K W, et al. Genetic liability to posttraumatic stress disorder symptoms and its association with cardiometabolic and respiratory outcomes. JAMA Psychiat, 2024, 81(1): 34-44.
|
4. |
Shalev A, Liberzon I, Marmar C. Post-traumatic stress disorder. N Engl J Med, 2017, 376(25): 2459-2469.
|
5. |
Ben-Zion Z, Zeevi Y, Keynan N J, et al. Multi-domain potential biomarkers for post-traumatic stress disorder (PTSD) severity in recent trauma survivors. Transl Psychiat, 2020, 10(1): 208,1-11.
|
6. |
Sheynin S, Wolf L, Ben-Zion Z, et al. Deep learning model of fMRI connectivity predicts PTSD symptom trajectories in recent trauma survivors. Neuroimage, 2021, 238: 118242.
|
7. |
Buckner R L, Krienen F M, Yeo B T T. Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci, 2013, 16(7): 832-837.
|
8. |
Li Y, Liu J, Tang Z, et al. Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification. IEEE Trans Med Imaging, 2020, 39(9): 2818-2830.
|
9. |
Li Y, Zhang Y, Cui W, et al. Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation. IEEE Trans Med Imaging, 2022, 41(8): 1975-1989.
|
10. |
Wang W, Xiao L, Qu G, et al. Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based functional connectivity network analysis. Med Image Anal, 2024, 94: 103144.
|
11. |
Campbell J M, Huang Z, Zhang J, et al. Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI. Neuroimage, 2020, 206: 116316.
|
12. |
Chang M, Womer F Y, Gong X, et al. Identifying and validating subtypes within major psychiatric disorders based on frontal–posterior functional imbalance via deep learning. Mol Psychiat, 2021, 26(7): 2991-3002.
|
13. |
Zheng J C, Wei X L, Wang J Y, et al. Diagnosis of schizophrenia based on deep learning using fMRI. Comput Math Methods Med, 2021, 2021: 8437260.
|
14. |
Kong Y, Wang W, Liu X, et al. Multi-connectivity representation learning network for major depressive disorder diagnosis. IEEE Trans Med Imaging, 2023, 42(10): 3012-3024.
|
15. |
Shao L, Fu C, You Y, et al. Classification of ASD based on fMRI data with deep learning. Cogn Neurodyn, 2021, 15(6): 961-974.
|
16. |
An N, Ding H, Yang J, et al. Deep ensemble learning for Alzheimer’s disease classification. J Biomed Inf, 2020, 105: 103411.
|
17. |
Zhu Z, Lei D, Qin K, et al. Combining deep learning and graph-theoretic brain features to detect posttraumatic stress disorder at the individual level. Diagnostics, 2021, 11(8): 1416.
|
18. |
Zhu X, Kim Y, Ravid O, et al. Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium. Neuroimage, 2023, 283: 120412.
|
19. |
Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, 2020, 32(1): 4-24.
|
20. |
Gallo S, El-Gazzar A, Zhutovsky P, et al. Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies. Mol Psychiat, 2023, 28(7): 3013-3022.
|
21. |
Ji J, Zhang Y. Functional brain network classification based on deep graph hashing learning. IEEE Trans Med Imaging, 2022, 41(10): 2891-2902.
|
22. |
Lei B, Zhu Y, Yu S, et al. Multi-scale enhanced graph convolutional network for mild cognitive impairment detection. Pattern Recogn, 2023, 134: 109106.
|
23. |
Duan J, Li Y, Zhang X, et al. Predicting treatment response in adolescents and young adults with major depressive episodes from fMRI using graph isomorphism network. Neuroimage Clin, 2023, 40: 103534.
|
24. |
Chu Y, Wang G, Cao L, et al. Multi-scale graph representation learning for autism identification with functional MRI. Front Neuroinform, 2022, 15: 802305.
|
25. |
Ma Y, Cui W, Liu J, et al. A multi-graph cross-attention based region-aware feature fusion network using multi-template for brain disorder diagnosis. IEEE Trans Med Imaging, 2023, 43(3): 1045-1059.
|
26. |
Lee D J, Shin D H, Son Y H, et al. Spectral graph neural network-based multi-atlas brain network fusion for major depressive disorder diagnosis. IEEE J Biomed Health Inform, 2024, 28(5): 2967-2978.
|
27. |
Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks// 5th International Conference on Learning Representations, ICLR 2017. Toulon: ICLR: 1-14.
|
28. |
Kazi A, Shekarforoush S, Arvind Krishna S, et al. InceptionGCN: receptive field aware graph convolutional network for disease prediction// IPMI 2019. Hong Kong: Springer, 2019: 73-85.
|
29. |
Lee J, Lee I, Kang J. Self-attention graph pooling// PMLR 2019. California: IMLS, 2019: 3734-3743.
|
30. |
Arslan S, Ktena S I, Glocker B, et al. Graph saliency maps through spectral convolutional networks: Application to sex classification with brain connectivity// GRAIL 2018. Granada: Springer, 2018: 3-13.
|
31. |
Xia M, Wang J, He Y. BrainNet viewer: A network visualization tool for human brain connectomics. PLoS ONE, 2013, 8(7): 1-15.
|
32. |
Zhu H, Yuan M, Qiu C, et al. Multivariate classification of earthquake survivors with post‐traumatic stress disorder based on large‐scale brain networks. Acta Psychiat Scand, 2020, 141(3): 285-298.
|
33. |
Zhang Q, Wu Q, Zhu H, et al. Multimodal MRI-based classification of trauma survivors with and without post-traumatic stress disorder. Front Neurosci, 2016, 10: 292.
|
34. |
Geuze E, Vermetten E, Ruf M, et al. Neural correlates of associative learning and memory in veterans with posttraumatic stress disorder. J Psychiat Res, 2008, 42(8): 659-669.
|
35. |
Meng L, Jiang J, Jin C, et al. Trauma-specific grey matter alterations in PTSD. Sci Rep, 2016, 6(1): 33748.
|
36. |
Herringa R, Phillips M, Almeida J, et al. Post-traumatic stress symptoms correlate with smaller subgenual cingulate, caudate, and insula volumes in unmedicated combat veterans. Psychiat Res, 2012, 203: 139-145.
|