1. |
Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease 2021: Findings from the GBD 2021 Study. (2024) [2024-12-15]. https://www.healthdata.org/research-analysis/library/global-burden-disease-2021-findings-gbd-2021-study.
|
2. |
邵谢宁, 张艺滢, 张栋, 等. 融合多感官刺激的虚拟现实—脑机接口手功能增强康复系统. 生物医学工程学杂志, 2024, 41(4): 656-663.
|
3. |
杨雪艳, 辉沐吟, 李寿蓉, 脑卒中患者早期康复时机及方法的研究进展. 临床护理进展, 2022, 1(3): 49-51.
|
4. |
Bauer G, Gerstenbrand F, Rumpl E. Varieties of the locked-in syndrome. J Neurol, 1979, 221(2): 77-91.
|
5. |
Cunha-Oliveira T, Montezinho L, Simes R F, et al. Mitochondria: a promising convergent target for the treatment of amyotrophic lateral sclerosis. Cells, 2024, 13(3): 248.
|
6. |
王润, 周春兰, 玉美, 等. 卒中后失语患者言语康复管理的证据总结. 护理学报, 2021, 28(11): 5.
|
7. |
Schnetzer L, Mccoy M, Bergmann J, et al. Locked-in syndrome revisited. Therapeutic Advances in Neurological Disorders, 2023, 16: 17562864231160873.
|
8. |
Genuis S K, Luth W, Bubela T, et al. What do people affected by amyotrophic lateral sclerosis want from health communications? Evidence from the ALS Talk Project. Muscle Nerve, 2023, 68(3): 286-295.
|
9. |
Stransky M L, Jensen K M, Morris M A. Adults with communication disabilities experience poorer health and healthcare outcomes compared to persons without communication disabilities. J Gen Intern Med, 2018, 33(12): 2147-2155.
|
10. |
Wolpaw J R, Birbaumer N, Mcfarland D J, et al. Brain-computer interfaces for communication and control. Suppl Clin Neurophysiol, 2002, 113(6): 767-791.
|
11. |
付佳钰, 王丽平. 基于脑电图的无创脑机接口的临床应用进展. 医学综述, 2021, 27(23): 4619-4623.
|
12. |
Birbaumer N, Ramos Murguialday A, Weber C, et al. Neurofeedback and brain-computer interface clinical applications. Int Rev Neurobiol, 2009, 86: 107-117.
|
13. |
Spataro R, Xu Y, Xu R, et al. How brain-computer interface technology may improve the diagnosis of the disorders of consciousness: a comparative study. Front Neurosci, 2022, 16: 959339.
|
14. |
Sebastián-Romagosa M, Cho W, Ortner R, et al. Brain computer interface treatment for motor rehabilitation of upper extremity of stroke patients-a feasibility study. Front Neurosci, 2020, 14: 591435.
|
15. |
Mane R, Chouhan T, Guan C. BCI for stroke rehabilitation: motor and beyond. J Neural Eng, 2020, 17(4): 041001.
|
16. |
Chen J, Liu Q, Tan C, et al. Non-invasive brain-computer interfaces effectively improve motor function, sensory function, and activities of daily living in patients with spinal cord injury: a systematic review and meta-analysis. Brain Network and Modulation, 2024, 3(1): 9-19.
|
17. |
李丹, 刘玲玉, 靳令经, 等. 基于脑机接口的康复训练在脑卒中上肢康复中的研究进展. 中国康复, 2023, 38(10): 621-625.
|
18. |
Xie X, Shi R, Yu H, et al. Executive function rehabilitation and evaluation based on brain-computer interface and virtual reality: our opinion. Front Neurosci, 2024, 18: 1377097.
|
19. |
Chen J, Zhang Y, Pan Y, et al. A transformer-based deep neural network model for SSVEP classification. Neural Networks, 2023, 164: 521-534.
|
20. |
Vialatte F B, Maurice M, Dauwels J, et al. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog Neurobiol, 2010, 90(4): 418-438.
|
21. |
Zhang Y, Xu P, Liu T, et al. Multiple frequencies sequential coding for SSVEP-based brain-computer interface. Plos One, 2012, 7(3): e29519.
|
22. |
Zhu D, Bieger J, Garcia Molina G, et al. A survey of stimulation methods used in SSVEP-based BCIs. Computational Intelligence and Neuroscience, 2010, 2010: 702357.
|
23. |
Wang Y, Wang R, Gao X, et al. A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 2006, 14(2): 234-239.
|
24. |
Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614.
|
25. |
Nakanishi M, Wang Y, Wang Y T, et al. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. Plos One, 2015, 10(10): e0140703.
|
26. |
Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. Journal of Neural Engineering, 2015, 12(4): 046008.
|
27. |
Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Transactions on Biomedical Engineering, 2018, 65(1): 104-112.
|
28. |
Liu B, Chen X, Shi N, et al. Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1998-2007.
|
29. |
Wang H, Li T, Huang Z. Remote control of an electrical car with SSVEP-based BCI// 2010 IEEE International Conference on Information Theory and Information Security. Beijing: IEEE, 2010: 837-840.
|
30. |
Peng Y, Wong C M, Wang Z, et al. Fatigue detection in SSVEP-BCIs based on wavelet entropy of EEG. IEEE Access, 2021, 9: 114905-114913.
|
31. |
Yin H, Ji Z, Lian Z, et al. Application of kurtosis based dynamic window to enhance SSVEP recognition//2022 China Automation Congress (CAC). Xiamen: IEEE, 2022: 571-576.
|
32. |
Chen X, Chen Z, Gao S, et al. A high-ITR SSVEP-based BCI speller. Brain-Computer Interfaces, 2014, 1(3-4): 181-191.
|
33. |
Yan W, Xu G, Du Y, et al. SSVEP-EEG feature enhancement method using an image sharpening filter. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 115-123.
|
34. |
Ji Z, Xu T, Chen C, et al. Subject-specific CNN model with parameter-based transfer learning for SSVEP detection. Biomedical Signal Processing and Control, 2024, 28(11): 1-9.
|
35. |
Wang H, Wang Z, Sun Y, et al. A cascade xDAWN EEGNet structure for unified visual-evoked related potential detection. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 2270-2280.
|
36. |
Wang Z, Chen C, Li J, et al. ST-CapsNet: linking spatial and temporal attention with capsule network for P300 detection improvement. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 991-1000.
|
37. |
Wang H, Xu T, Tang C, et al. Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection. IEEE Access, 2020, 8: 155590-155601.
|
38. |
Zhang H, Wang Z, Yu Y, et al. An improved EEGNet for single-trial EEG classification in rapid serial visual presentation task. Brain Science Advances, 2022, 8(2): 111-126.
|
39. |
Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng, 2000, 8(2): 164-173.
|
40. |
Walter S, Quigley C, Andersen S K, et al. Effects of overt and covert attention on the steady-state visual evoked potential. Neurosci Lett, 2012, 519(1): 37-41.
|