• 1. Brain-Computer Interface Translation Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P. R. China;
  • 2. Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China;
  • 3. School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P. R. China;
YANG Yi, Email: yangyi_81nk@163.com
Export PDF Favorites Scan Get Citation

Clinical grading diagnosis of disorder of consciousness (DOC) patients relies on behavioral assessment, which has certain limitations. Combining multi-modal technologies and brain-computer interface (BCI) paradigms can assist in identifying patients with minimally conscious state (MCS) and vegetative state (VS). This study collected electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals under motor BCI paradigms from 14 DOC patients, who were divided into two groups based on clinical scores: 7 in the MCS group and 7 in the VS group. We calculated event-related desynchronization (ERD) and motor decoding accuracy to analyze the effectiveness of motor BCI paradigms in detecting consciousness states. The results showed that the classification accuracies for left-hand and right-hand movement tasks using EEG were 93.28% and 76.19% for the MCS and VS groups, respectively; the classification precisions using fNIRS were 53.72% and 49.11% for these groups. When combining EEG and fNIRS features, the classification accuracies for left-hand and right-hand movement tasks in the MCS and VS groups were 95.56% and 87.38%, respectively. Although there was no statistically significant difference in motor decoding accuracy between the two groups, significant differences in ERD were observed between different consciousness states during left-hand movement tasks (P < 0.001). This study demonstrates that motor BCI paradigms can assist in assessing the level of consciousness, with EEG being more sensitive for evaluating residual motor intention intensity. Moreover, the ERD feature of motor intention intensity is more sensitive than BCI classification accuracy.

Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved