| 1. |
Zhao Y, Schaafsma E, Cheng C. Gene signature-based prediction of triple-negative breast cancer patient response to Neoadjuvant chemotherap. Cancer Med, 2020, 9(17): 6281-6295.
|
| 2. |
Zhang M, Deng H, Hu R, et al. Patterns and prognostic implications of distant metastasis in breast cancer based on SEER population data. Science, 2025, 15(1): 26717.
|
| 3. |
Vyas M, Requesens M, Nguyen T H, et al. Natural killer cells suppress cancer metastasis by eliminating circulating cancer cells. Front Immunol, 2023, 13: 1098445.
|
| 4. |
Li Y, Liu F, Cai Q, et al. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther, 2025, 10(1): 57.
|
| 5. |
Mittelheisser V, Gensbittel V, Bonati L, et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat Nanotechnol, 2024, 19(3): 281-297.
|
| 6. |
Shen M, Kang Y. Stresses in the metastatic cascade: molecular mechanisms and therapeutic opportunities. Genes Dev, 2020, 34(23-24): 1577-1598.
|
| 7. |
Salminen A T, Allahyari Z, Gholizadeh S, et al. In vitro studies of transendothelial migration for biological and drug discovery. Front Med Technol, 2020, 2: 600616.
|
| 8. |
Agrawal A, Javanmardi Y, Watson SA, et al. Mechanical signatures in cancer metastasis. NPJ Biol Phys Mech, 2025, 2(1): 3.
|
| 9. |
Hu B, Xin Y, Hu G, et al. Fluid shear stress enhances natural killer cell’s cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng, 2023, 7(3): 036108.
|
| 10. |
Wu S, Tan Y, Li F, et al. CD44: a cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol, 2024, 15: 1354992.
|
| 11. |
Witschen P M, Chaffee T S, Brady N J, et al. Tumor cell associated hyaluronan-CD44 signaling promotes pro-tumor inflammation in breast cancer. Cancers (Basel), 2020, 12(5): 1325.
|
| 12. |
Amorim S, Reis C A, Reis R L, et al. Extracellular matrix mimics using hyaluronan-based biomaterials. Trends Biotechnol, 2021, 39(1): 90-104.
|
| 13. |
Zhang J, Huang S, Zhu Z, et al. E-selectin in vascular pathophysiology. Front Immunol, 2024, 15: 1401399.
|
| 14. |
Ogrodzinski L, Platt S, Goulding J, et al. Probing expression of E-selectin using CRISPR-Cas9-mediated tagging with HiBiT in human endothelial cells. iScience, 2023, 26(7): 107232.
|
| 15. |
Hassn Mesrati M, Syafruddin S E, Mohtar M A, et al. CD44: A multifunctional mediator of cancer progression. Biomolecules, 2021, 11(12): 1850.
|
| 16. |
Skandalis S S, Karalis T T, Chatzopoulos A, et al. Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal, 2019, 6: 109377.
|
| 17. |
Suzuki T, Suzuki M, Ogino S, et al. Mechanical force effect on the two-state equilibrium of the hyaluronanbinding domain of CD44 in cell rolling. Proc Natl Acad Sci USA, 2015, 112(22): 6991-6996.
|
| 18. |
Xu S, Wang T, Hu X, et al. A dual chemodrug-loaded hyaluronan nanogel for differentiation induction therapy of refractory AML via disrupting lysosomal homeostasis. Sci Adv, 2025, 11(13): eado3923.
|
| 19. |
McFarlane S, McFarlane C, Montgomery N, et al. CD44-mediated activation of alpha 5 beta 1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectin-enriched matrices. Oncotarget, 2015, 6(34): 36762-36773.
|
| 20. |
Grafinger O R, Gorshtein G, Stirling T, et al. β1 integrin-mediated signaling regulates MT1-MMP phosphorylation to promote tumor cell invasion. J Cell Sci, 2020, 133(9): jcs239152.
|
| 21. |
Niland S, Eble J A. Hold on or Cut? Integrin- and MMP-mediated cell–matrix interactions in the tumor microenvironment. Int J Mol Sci, 2020, 22(1): 238.
|
| 22. |
Iamshanova O, Fiorio Pla A, Prevarskaya N. Molecular mechanisms of tumour invasion: regulation by calcium signals. J Physiol, 2017, 595(10): 3063-3075.
|
| 23. |
Cui C, Zhang Y, Liu G, et al. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. Explor Target Antitumor Ther, 2021, 2(3): 266-291.
|
| 24. |
Silvestri R, Nicolì V, Gangadharannambiar P, et al. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol, 2023, 20(9): 524-543.
|
| 25. |
Yago T, Shao B, Miner J J, et al. E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin αLβ2-mediated slow leukocyte rolling. Blood, 2010, 116(3): 485-494.
|
| 26. |
Ali A J, Abuelela A F, Merzaban J S. An analysis of trafficking receptors shows that CD44 and P-selectin glycoprotein ligand-1 collectively control the migration of activated human T-cells. Front Immunol, 2017, 8: 492.
|
| 27. |
李林达, 丁奇寒, 陈深宝, 等. CD44-配体相互作用的生物力学与功能调控. 力学学报, 2021, 53(2): 539-553.
|
| 28. |
Al Dybiat I, Mirshahi S, Belalou M, et al. Injured tissues favor cancer cell implantation via fibrin deposits on scar zones. Neoplasia, 2020, 22(12): 809-819.
|
| 29. |
Seo J, Do Yoo J, Kim M, et al. Fibrinolytic nanocages dissolve clots in the tumor microenvironment, improving the distribution and therapeutic efficacy of anticancer drugs. Exp Mol Med, 2021, 53(10): 1592-1601.
|
| 30. |
Bekos C, Grimm C, Brodowicz T, et al. Prognostic role of plasma fibrinogen in patients with uterine leiomyosarcoma–a multicenter study. Sci Rep, 2017, 7(1): 14474.
|
| 31. |
张颖, 方颖, 吴建华, 等. 流体剪切力下 CD44-HA 介导的 MDA-MB-231 细胞及 HL60 细胞的滚动黏附. 医用生物力学, 2023, 38(2): 220-227.
|
| 32. |
Sun X, Huang B, Pan Y, et al. Spatiotemporal characteristics of P-selectin-induced β2 integrin activation of human neutrophils under flow. Front Immunol, 2022, 13: 1023865.
|
| 33. |
Yago T, Wu J, Wey C D, et al. Catch bonds govern adhesion through L-selectin at threshold shear. Cell Biol, 2004, 166(6): 913-923.
|
| 34. |
Li J, Springer T A. Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc Natl Acad Sci USA, 2017, 114(18): 4685-4690.
|
| 35. |
胡兵, 吴建华, 凌颖琛, 等. 流体剪切力下趋化因子 CXCL12 诱导 Jurkat T 细胞的钙响应机制. 医用生物力学, 2020, 35(3): 331-337.
|
| 36. |
Cui C, Merritt R, Fu L, et al. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B, 2017, 7(1): 3-17.
|
| 37. |
Zarbock A, Abram C L, Hundt M, et al. PSGL-1 engagement by E-selectin signals through Src kinase Fgr and ITAM adapters DAP12 and FcRγ to induce slow leukocyte rolling. Exp Med, 2008, 205(10): 2339-2347.
|
| 38. |
张力, 吴建华, 方颖. 流体剪应力作用下E-选择素介导的中性粒细胞钙响应. 医用生物力学, 2018, 33(2): 150-156.
|