| 1. |
赵苗苗, 王莉, 陈满满, 等. 老年脑卒中患者老化态度现状及影响因素分析. 护理学杂志, 2024, 39(14): 16-20.
|
| 2. |
李丹, 刘玲玉, 靳令经, 等. 基于脑机接口的康复训练在脑卒中上肢康复中的研究进展. 中国康复, 2023, 38(10): 621-625.
|
| 3. |
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol, 2021, 20(10): 795-820.
|
| 4. |
吴雪健, 褚亚奇, 赵新刚, 等. 基于空-频特征图学习三维卷积神经网络的运动想象脑电解码方法. 生物医学工程学杂志, 2024, 41(6): 1145-1152.
|
| 5. |
Coscia M, Wessel M J, Chaudary U, et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain, 2019, 142(8): 2182-2197.
|
| 6. |
Huang Q, Zhang Z, Yu T, et al. An EEG-/EOG-based hybrid brain-computer interface: application on controlling an integrated wheelchair robotic arm system. Front Neurosci, 2019, 13: 1243.
|
| 7. |
潘林聪, 孙新维, 王坤, 等. 基于黎曼空间滤波与域适应的跨时间运动想象-脑电解码研究. 生物医学工程学杂志, 2025, 42(2): 272-279.
|
| 8. |
Jiang J, Shu Y, Wang J, et al. Transferability in deep learning: A survey. arXiv, 2022: 2201.05867.
|
| 9. |
Shi, Y J, Ying X H, Yang J F. Deep unsupervised domain adaptation with time series sensor data: A survey. Sensors, 2022, 15: 5507.
|
| 10. |
刘拓, 叶阳阳, 王坤, 等. 运动想像脑电信号分类算法的研究进展. 生物医学工程学杂志, 2021, 38(5): 995-1002.
|
| 11. |
Dong Y R, Hu D Y, Wang S R, et al. Heterogeneous domain adaptation for intracortical signal classification using domain consensus. Biomed. Signal Process Control, 2023, 82: 104540.
|
| 12. |
Zhao H, Zheng Q, Ma K, et al. Deep representation-based domain adaptation for nonstationary EEG classification. IEEE Trans Neural Netw Learn Syst, 2021, 32(2): 535-545.
|
| 13. |
Li D, Xu J, Zhang Y, et al. Prototypical contrastive domain adaptation network for nonstationary EEG classification. IEEE Trans Instrum Meas, 2024, 73: 1-13.
|
| 14. |
Long M, Cao Z, Wang J, et al. Conditional adversarial domain adaptation// 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). Montréal: NIPS, 2018: 1-11.
|
| 15. |
Zhang Y, Qiu S, Wei W, et al. Dynamic weighted filter bank domain adaptation for motor imagery brain–computer interfaces. IEEE Trans Cogn Dev Syst, 2022, 15(3): 1348-1359.
|
| 16. |
She Q, Chen T, Fang F, et al. Improved domain adaptation network based on Wasserstein distance for motor imagery EEG classification. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 1137-1148.
|
| 17. |
Li H, Zhang D, Xie J. MI-DABAN: A dual-attention-based adversarial network for motor imagery classification. Comput Biol Med, 2023, 152: 106420.
|
| 18. |
Wei F, Xu X, Li X, et al. BDAN-SPD: A brain decoding adversarial network guided by spatiotemporal pattern differences for cross-subject MI-BCI. IEEE Trans Industr Inform, 2024, 12: 14321-14329.
|
| 19. |
Li H, An J, Juan R, et al. Manifold-based multi-branch transfer learning for MI-EEG decoding. Chaos Solitons Fractals, 2025, 196: 116326.
|
| 20. |
Gao Y, Liu Y, She Q, et al. Domain adaptive algorithm based on multi-manifold embedded distributed alignment for brain-computer interfaces. J Biomed Health Inform (J-BHI), 2023, 27(1): 296-307.
|
| 21. |
Ahn M, Hong J H, Jun S C. Source space based brain computer interface// 17th International Conference on Biomagnetism Advances in Biomagnetism–Biomag2010. Berlin, Heidelberg: Springer, 2010: 366-369.
|
| 22. |
Zaitcev A, Cook G, Liu W, et al. Feature extraction for BCIs based on electromagnetic source localization and multiclass Filter Bank Common Spatial Patterns// 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Lisbon: IEEE, 2015: 1773-1776.
|
| 23. |
Sohrabpour A, He Bin. Exploring the extent of source imaging: Recent advances in noninvasive electromagnetic brain imaging. Curr Opin Biomed Eng, 2021, 18: 100277.
|
| 24. |
Wang L, Li M. Decoding motor imagery based on dipole feature imaging and a hybrid CNN with embedded squeeze-and-excitation block. Biocybernet Biomed Eng, 2023, 43(4): 751-762.
|
| 25. |
Hou Y, Zhou L, Jia S, et al. A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. J Neural Eng, 2020, 17(1): 016048.1-016048.15.
|
| 26. |
Fang T, Song Z, Zhan G, et al. Decoding motor imagery tasks using ESI and hybrid feature CNN. J Neural Eng, 2022, 19(1): 015003.
|
| 27. |
Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell, 2020, 42(8): 2011-2023.
|
| 28. |
Pascual-Marqui R D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol, 2002, 24(Suppl D): 5-12.
|
| 29. |
唐向宏, 李齐良. 时频分析与小波变换. 北京: 科学出版社, 2008: 118-126.
|
| 30. |
Huang Z, Gool L V. A riemannian network for SPD matrix learning. arXiv, 2016: 1608.04233.
|
| 31. |
Mao A Q, Mohri M, Zhong Y T. H-consistency bounds for comp-sum losses// Proceedings of the 40th International Conference on Machine Learning. Honolulu: PMLR, 2023: 123-130.
|
| 32. |
Song Y H, Zheng Q Q, Wang Q, et al. Global adaptive transformer for cross-subject enhanced EEG classification. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 2767-2777.
|
| 33. |
Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng, 2018, 15(5): 056013.
|
| 34. |
Phunruangsakao C, David A, Mitsuhiro H. Deep adversarial domain adaptation with few-shot learning for motor-imagery brain-computer interface. IEEE Access, 2022, 10: 57255-57265.
|
| 35. |
Yu C, Wang J, Chen Y, et al. Transfer learning with dynamic adversarial adaptation network// 2019 IEEE International Conference on Data Mining (ICDM). Beijing: IEEE, 2019: 778-786.
|
| 36. |
Wang H, Chen P, Zhang M, et al. EEG-based motor imagery recognition framework via multisubject dynamic transfer and iterative self-training. IEEE Trans Neural Netw Learn Syst, 2023, 35(8): 10698-10712.
|
| 37. |
Chen P, Liu X, Ma C, et al. Unsupervised domain adaptation with synchronized self-training for cross-domain motor imagery recognition. IEEE J Biomed Health Inform, 2025, 29(5): 3664-3677.
|